46 research outputs found

    A new graph parameter related to bounded rank positive semidefinite matrix completions

    Get PDF
    The Gram dimension \gd(G) of a graph GG is the smallest integer k≥1k\ge 1 such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of GG, can be completed to a positive semidefinite matrix of rank at most kk (assuming a positive semidefinite completion exists). For any fixed kk the class of graphs satisfying \gd(G) \le k is minor closed, hence it can characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is Kk+1K_{k+1} for k≤3k\le 3 and that there are two minimal forbidden minors: K5K_5 and K2,2,2K_{2,2,2} for k=4k=4. We also show some close connections to Euclidean realizations of graphs and to the graph parameter ν=(G)\nu^=(G) of \cite{H03}. In particular, our characterization of the graphs with \gd(G)\le 4 implies the forbidden minor characterization of the 3-realizable graphs of Belk and Connelly \cite{Belk,BC} and of the graphs with ν=(G)≤4\nu^=(G) \le 4 of van der Holst \cite{H03}.Comment: 31 pages, 6 Figures. arXiv admin note: substantial text overlap with arXiv:1112.596

    Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

    Get PDF
    We study a new geometric graph parameter \egd(G), defined as the smallest integer r≥1r\ge 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of GG, can be completed to a matrix in the convex hull of correlation matrices of \rank at most rr. This graph parameter is motivated by its relevance to the problem of finding low rank solutions to semidefinite programs over the elliptope, and also by its relevance to the bounded rank Grothendieck constant. Indeed, \egd(G)\le r if and only if the rank-rr Grothendieck constant of GG is equal to 1. We show that the parameter \egd(G) is minor monotone, we identify several classes of forbidden minors for \egd(G)\le r and we give the full characterization for the case r=2r=2. We also show an upper bound for \egd(G) in terms of a new tree-width-like parameter \sla(G), defined as the smallest rr for which GG is a minor of the strong product of a tree and KrK_r. We show that, for any 2-connected graph G≠K3,3G\ne K_{3,3} on at least 6 nodes, \egd(G)\le 2 if and only if \sla(G)\le 2.Comment: 33 pages, 8 Figures. In its second version, the paper has been modified to accommodate the suggestions of the referees. Furthermore, the title has been changed since we feel that the new title reflects more accurately the content and the main results of the pape

    Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property

    Get PDF
    This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a sufficient condition for constructing partial psd matrices which admit a unique completion to a full psd matrix. Such partial matrices are an essential tool in the study of the Gram dimension \gd(G) of a graph G, a recently studied graph parameter related to the low psd matrix completion problem. Additionally, we derive an elementary proof of Connelly's sufficient condition for universal rigidity of tensegrity frameworks and we investigate the links between these two sufficient conditions. We also give a geometric characterization of psd matrices satisfying the Strong Arnold Property in terms of nondegeneracy of an associated semidefinite program, which we use to establish some links between the Gram dimension \gd(\cdot) and the Colin de Verdi\`ere type graph parameter ν=(⋅)

    Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property

    Get PDF
    This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a sufficient condition for constructing partial psd matrices which admit a unique completion to a full psd matrix. Such partial matrices are an essential tool in the study of the Gram dimension \gd(G) of a graph G, a recently studied graph parameter related to the low psd matrix completion problem. Additionally, we derive an elementary proof of Connelly's sufficient condition for universal rigidity of tensegrity frameworks and we investigate the links between these two sufficient conditions. We also give a geometric characterization of psd matrices satisfying the Strong Arnold Property in terms of nondegeneracy of an associated semidefinite program, which we use to establish some links between the Gram dimension \gd(\cdot) and the Colin de Verdi\`ere type graph parameter ν=(⋅)

    Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property

    Get PDF
    This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a sufficient condition for constructing partial psd matrices which admit a unique completion to a full psd matrix. Such partial matrices are an essential tool in the study of the Gram dimension \gd(G) of a graph G, a recently studied graph parameter related to the low psd matrix completion problem. Additionally, we derive an elementary proof of Connelly's sufficient condition for universal rigidity of tensegrity frameworks and we investigate the links between these two sufficient conditions. We also give a geometric characterization of psd matrices satisfying the Strong Arnold Property in terms of nondegeneracy of an associated semidefinite program, which we use to establish some links between the Gram dimension \gd(\cdot) and the Colin de Verdi\`ere type graph parameter ν=(⋅)
    corecore