135 research outputs found

    Inhomogeneities and iron diffusion in a Thailand tektite Semiannual report, Apr. 1969

    Get PDF
    Electron microscopic examination of Thailand tektit

    Development of optical diaphragm deflection sensors

    Get PDF
    The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range

    Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    Get PDF
    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO2, GeO2, B2O3, anorthite, diopside, xNa2O–(1-x)SiO2, xPbO–(1-x)SiO2, soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

    Elastic properties of TeO2-B2O3-Ag2O glasses.

    Get PDF
    A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed

    Mesoscale engineering of photonic glass for tunable luminescence

    Get PDF
    The control of optical behavior of active materials through manipulation of microstructure has led to the development of high-performance photonic devices with enhanced integration density, improved quantum efficiencies and controllable colour output. However, the achievement of robust light-harvesting materials with tunable, broadband and flatten emission remains a long-standing goal, owing to the limited inhomogeneous broadening in ordinary hosts. Here, we describe an effective strategy for management of photon emission by manipulation of mesoscale heterogeneities in optically active materials. Importantly, this unique approach enables control of dopant-dopant and dopant-host interactions at the extended mesoscale. This allows generating intriguing optical phenomena such as high activation ratio of dopant (close to 100 %), dramatically inhomogeneous broadening (up to 480 nm), notable emission enhancement, and moreover, simultaneously extending emission bandwidth and flattening spectral shape in glass and fiber. Our results highlight that the findings connect the understanding and manipulation at the mesoscale realm to functional behavior at the macroscale, and the approach to managing the dopants based on mesoscale engineering may provide new opportunity for construction of robust fiber light source.National Natural Science Foundation of China (Grant IDs: 11474102, 51202180), the Chinese Program for New Century Excellent Talents in University (Grant ID: NCET-13-0221), Guangdong Natural Science Funds for Distinguished Young Scholar (Grant ID: S2013050014549), Fundamental Research Funds for the Central University, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, World Premier International Research Center Initiative (WPI), MEXT, JapanThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    Distributed joint source channel coding on a multiple access channel with side information

    No full text
    We consider the problem of transmission of several discrete sources over a multiple access channel (MAC) with side information at the sources and the decoder. Source-channel separation does not hold for this channel. Sufficient conditions are provided for transmission of sources with a given distortion. The channel could have continuous alphabets (Gaussian MAC is a special case). Various previous results are obtained as special cases
    corecore