40 research outputs found

    Designing Toxicogenomics Studies that use DNA Array Technology

    Get PDF
    Background: Bioassays are routinely used to evaluate the toxicity of test agents. Experimental designs for bioassays are largely encompassed by fixed effects linear models. In toxicogenomics studies where DNA arrays measure mRNA levels, the tissue samples are typically generated in a bioassay. These measurements introduce additional sources of variation, which must be properly managed to obtain valid tests of treatment effects.Results: An analysis of covariance model is developed which combines a fixed-effects linear model for the bioassay with important variance components associated with DNA array measurements. These models can accommodate the dominant characteristics of measurements from DNA arrays, and they account for technical variation associated with normalization, spots, dyes, and batches as well as the biological variation associated with the bioassay. An example illustrates how the model is used to identify valid designs and to compare competing designs.Conclusions: Many toxicogenomics studies are bioassays which measure gene expression using DNA arrays. These studies can be designed and analyzed using standard methods with a few modifications to account for characteristics of array measurements, such as multiple endpoints and normalization. As much as possible, technical variation associated with probes, dyes, and batches are managed by blocking treatments within these sources of variation. An example shows how some practical constraints can be accommodated by this modelling and how it allows one to objectively compare competing designs

    Testing for treatment effects on gene ontology

    Get PDF
    In studies that use DNA arrays to assess changes in gene expression, it is preferable to measure the significance of treatment effects on a group of genes from a pathway or functional category such as gene ontology terms (GO terms, ) because this facilitates the interpretation of effects and may markedly increase significance. A modified meta-analysis method to combine p-values was developed to measure the significance of an overall treatment effect on such functionally-defined groups of genes, taking into account the correlation structure among genes. For hypothesis testing that allows gene expression to change in both directions, p-values are calculated under the null distribution generated by a Monte Carlo method

    Sex and age differences in the expression of liver microRNAs during the life span of F344 rats

    Get PDF
    214 miRNAs differentially expressed by age and/or sex. Each miRNA is shown as differentially expressed by age, sex, or both age and sex, along with the k-means cluster number from Fig. 2 and chromosome mapping position. (XLSX 20 kb

    Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements

    Get PDF
    BACKGROUND: Environmental ozone can rapidly degrade cyanine 5 (Cy5), a fluorescent dye commonly used in microarray gene expression studies. Cyanine 3 (Cy3) is much less affected by atmospheric ozone. Degradation of the Cy5 signal relative to the Cy3 signal in 2-color microarrays will adversely reduce the Cy5/Cy3 ratio resulting in unreliable microarray data. RESULTS: Ozone in central Arkansas typically ranges between ~22 ppb to ~46 ppb and can be as high as 60–100 ppb depending upon season, meteorological conditions, and time of day. These levels of ozone are common in many areas of the country during the summer. A carbon filter was installed in the laboratory air handling system to reduce ozone levels in the microarray laboratory. In addition, the airflow was balanced to prevent non-filtered air from entering the laboratory. These modifications reduced the ozone within the microarray laboratory to ~2–4 ppb. Data presented here document reductions in Cy5 signal on both in-house produced microarrays and commercial microarrays as a result of exposure to unfiltered air. Comparisons of identically hybridized microarrays exposed to either carbon-filtered or unfiltered air demonstrated the protective effect of carbon-filtration on microarray data as indicated by Cy5 and Cy3 intensities. LOWESS normalization of the data was not able to completely overcome the effect of ozone-induced reduction of Cy5 signal. Experiments were also conducted to examine the effects of high humidity on microarray quality. Modest, but significant, increases in Cy5 and Cy3 signal intensities were observed after 2 or 4 hours at 98–99% humidity compared to 42% humidity. CONCLUSION: Simple installation of carbon filters in the laboratory air handling system resulted in low and consistent ozone levels. This allowed the accurate determination of gene expression by microarray using Cy5 and Cy3 fluorescent dyes

    Human Dectin-1 Deficiency Impairs Macrophage-Mediated Defense Against Phaeohyphomycosis

    Get PDF
    Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient\u27s PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore