353 research outputs found

    Tackling local ecological homogeneity. Finding intraspecific trait variability in local populations of Mediterranean plants

    Get PDF
    Local homogeneity, in ecology, is the often undisclosed assumption that variability within populations is negligible or mostly distributed evenly. In large areas, this can lead to the aggregation of different populations without regard for their unique needs and characteristics, such as drought sensitivity and functional trait distributions. Here, we discuss whether this assumption can be justified, and we hypothesize that discerning the source of variation between plasticity and adaptation could be a feasible approach to formulate an informed decision. We test this hypothesis on plants, resorting to a common garden experiment to determine the source of variation of several plant functional traits at a local scale (~60 km) of three wild species: Quercus ilex, Pistacia lentiscus, and Cistus salviifolius. Individuals of each species were sourced from three key sites chosen along a local aridity gradient. Our approach led to the rejection of the local homogeneity assumption for Q. ilex and C. salviifolius at this scale due to the adaptive divergence observed among neighboring populations. This case study provides evidence that addressing local homogeneity can highlight diverging populations in a relatively simple way. We conclude that gathering empirical evidence on intraspecific variability is a feasible approach that can provide researchers with solid bases to decide whether to adopt the local homogeneity assumption or not

    evergreen species response to mediterranean climate stress factors

    Get PDF
    Abstract: Recent climatic projections predict a decline in rainfall mainly during the summer period and an increase in air temperature for the Mediterranean basin, resulting in extended periods of soil water deficit. Mediterranean evergreen species attain drought resistance through different traits or combination of traits. The main objective of this research is to analyze the response of the evergreen species co-occurring in the Mediterranean maquis to variations in water availability and air temperature during the year. The results show that leaf structural traits significantly affect physiological traits as confirmed by the Partial Least Squares Regression analysis (PLS). In particular, the considered species have a similar leaf respiration (RL) trend during the year with the lowest rates in winter (mean 0.95 ± 0.44 µmol m-2 s-1) and the highest in drought (mean 3.05 ± 0.96 µmol m-2 s-1). Nevertheless, a different RL effect on gross photosynthesis (PG) during drought was observed. C. incanus, E. multiflora, R. officinalis and S. aspera have the highest RL/PG ratio (mean 0.54 ± 0.08), while Q. ilex, P. latifolia, P. lentiscus, A. unedo and E. arborea have the lowest (mean 0.22 ± 0.07). RL/PG ratio variations depend on the sensitivity of both the two parameters to drought. Considering the increase of the length and intensity of drought in the Mediterranean basin, and that the photosynthesis of Mediterranean evergreen species is frequently limited by sub-optimal conditions (i.e., water deficit, high light intensity and high air temperature), it is important to improve knowledge on RL, since it has a critical function in modulating carbon balance of Mediterranean species

    Leaf rolling as indicator of water stress in Cistus incanus from different provenances

    Get PDF
    Leaf movements such as leaf rolling affect plant physiological performance by reducing light capture. The relationship between leaf rolling and physiological traits under imposed water stress conditions was analyzed in two population of Cistus incanus. We tested the hypothesis that leaf rolling reflected physiological changes occurring during water stress irrespective of the different acclimation in order to cope with water stress. On the whole, our results confirmed our hypothesis since leaf rolling significantly reflected physiological activity changes. Moreover, leaf rolling might be involved in protecting the PSII complex under water stress during the progressive inhibition of photosynthetic metabolism. Thus, leaf rolling could be part of C. incanus adaptive strategy to cope with water stress by sustaining leaf turgor. As such, leaf rolling may be used as a morphological index to evaluate the progressive inhibition of photosynthesis irrespective of the different acclimation to cope with water stress

    Climatic variations along an aridity gradient drive significant trait intraspecific variability in Mediterranean plant species

    Get PDF
    Drought represents one of the main sources of stress for plants in the Mediterranean region, and climate change is further escalating this stress. Plants can employ several response strategies to cope with stress, reflected in the adoption of specific Plant Functional Traits (PFTs). Trait-based approaches commonly meet three issues: they may overlook Intraspecific Variability (ITV), they could focus on large spatial scales, or they could focus on few traits. Here we present evidence that it's possible to observe ITV in morphological and anatomical trait syndromes between three local populations of Phillyrea latifolia, Pistacia lentiscus, and Quercus ilex, distributed along an aridity gradient. Thicker, physiologically expensive leaves and lower heights found in the drier sites mainly conform to drought-resistance strategies, while trait spectra from Cistus salviifolius were found not to vary significantly across sites. Thus, the amount of ITV observable at a local scale varies between species. We conclude that climate can easily drive a significant amount of ITV for several species, reflected in their trait spectra, among plant populations that are geographically close to each other. This highlights the importance of local environmental variability and implies that different populations hailing from nearby sites might respond differently to climate change

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    photochemical performance of carpobrotus edulis in response to various substrate salt concentrations

    Get PDF
    Abstract Substrate salinity is one of the main abiotic factors limiting plant establishment, growth and distribution in coastal habitats. Nevertheless, few studies have investigated the interaction between salt concentration and duration of exposure on the physiology and growth of Carpobrotus edulis, an important invasive plant species growing in coastal dune habitats. In this study, four salinity treatment cycles of different length (three, six, twelve and twenty-four days) at salinity of 0 M, 0.1 M, 0.2 M and 0.3 M were imposed. A significant response in plant growth was elicited after 24 days of treatment. The main shoot length (MSL) and stem biomass (SBMS) increased by 11% and 4%, respectively at 0.1 M and by 25% and 6% at 0.2 M compared with the control. At 0.3 M MSL did not significantly differ from the control while SBMS was 18% lower. Moreover, C. edulis showed a high photoprotection mechanism efficiency resulting in a high carotenoid to chlorophyll ratio increase which was two, three and four times higher than the control at 0.1 M, 0.2 M and 0.3 M, respectively. Photochemically, the quantum yield of photosynthesis (ΦPSII) was 17%, 50% and 52% lower than the control at 0.1 M, 0.2 M and 0.3 M. The ΦPSII decrease was associated with a low leaf nitrogen content (NL) decrease (16%, 21% lower than the control at 0.1 M and 0.2 M, respectively). By contrast, NL had the highest decrease (41% lower than the control) at 0.3 M, which constrains the growth capacity. Overall, C. edulis was able to modulate its response to salinity. The salt stimulated shoot elongation at low or moderate salt concentrations could confer a competitive advantage making C. edulis even more efficient in establishing within the areas which it colonizes. Since the expansion of C. edulis may be enhanced by the forecasted increase in soil salinity, it will be of paramount importance to apply effective management practices in areas invaded by C. edulis to limit its expansion and preserve the native plant biodiversity

    Evergreen species response to Mediterranean climate stress factors

    Full text link

    The phosphatase Shp1 interacts with and dephosphorylates cortactin to inhibit invadopodia function

    Get PDF
    Background: Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods: Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results: The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion: The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs. [MediaObject not available: see fulltext.

    Leptin and Gestational Diabetes Mellitus

    Get PDF
    Emerging research has highlighted the importance of leptin in fetal growth and development, independent of its essential role in the regulation of feeding and energy metabolism. Leptin is now considered an important signaling molecule of the reproductive system, since it regulates the production of gonadotropins, the blastocyst formation and implantation, the normal placentation, as well as the feto-placental communication. Placental leptin is an important cytokine which regulates placental functions in an autocrine or paracrine manner. Leptin seems to play a crucial role during the first stages of pregnancy as it modulates critical processes like proliferation, protein synthesis, invasion, and apoptosis in placental cells. Furthermore, deregulation of leptin levels has been correlated with the pathogenesis of various disorders associated with reproduction and gestation, including gestational diabetes mellitus (GDM). Due to the relevant incidence of the GDM and the importance of leptin, we decided to review the latest information available about leptin action in normal and GDM pregnancies to support the idea of leptin as an important factor and/or predictor of diverse disorders associated with reproduction and pregnancy
    corecore