26 research outputs found

    Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-α-acetyltransferase

    Get PDF
    BACKGROUND: Protein acetylation is increasingly recognized as an important mechanism regulating a variety of cellular functions. Several human protein acetyltransferases have been characterized, most of them catalyzing ε-acetylation of histones and transcription factors. We recently described the human protein acetyltransferase hARD1 (human Arrest Defective 1). hARD1 interacts with NATH (N-Acetyl Transferase Human) forming a complex expressing protein N-terminal α-acetylation activity. RESULTS: We here describe a human protein, hARD2, with 81 % sequence identity to hARD1. The gene encoding hARD2 most likely originates from a eutherian mammal specific retrotransposition event. hARD2 mRNA and protein are expressed in several human cell lines. Immunoprecipitation experiments show that hARD2 protein potentially interacts with NATH, suggesting that hARD2-NATH complexes may be responsible for protein N-α-acetylation in human cells. In NB4 cells undergoing retinoic acid mediated differentiation, the level of endogenous hARD1 and NATH protein decreases while the level of hARD2 protein is stable. CONCLUSION: A human protein N-α-acetyltransferase is herein described. ARD2 potentially complements the functions of ARD1, adding more flexibility and complexity to protein N-α-acetylation in human cells as compared to lower organisms which only have one ARD

    Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the PDGF family have been suggested as potential biomarkers for papillary thyroid carcinomas (PTC). However, it is known that both expression and stimulatory effect of PDGF ligands can be affected by inflammatory cytokines. We have performed a microarray study in a collection of PTCs, of which about half the biopsies contained tumour-infiltrating lymphocytes or thyroiditis. To investigate the expression level of PDGF ligands and receptors in PTC we measured the relative mRNA expression of all members of the PDGF family by qRT-PCR in 10 classical PTC, eight clinically aggressive PTC, and five non-neoplastic thyroid specimens, and integrated qRT-PCR data with microarray data to enable us to link PDGF-associated gene expression profiles into networks based on recognized interactions. Finally, we investigated potential influence on PDGF mRNA levels by the presence of tumour-infiltrating lymphocytes.</p> <p>Methods</p> <p>qRT-PCR was performed on <it>PDGFA</it>, <it>PDGFB</it>, <it>PDGFC</it>, <it>PDGFD</it>, <it>PDGFRA PDGFRB </it>and a selection of lymphocyte specific mRNA transcripts. Semiquantitative assessment of tumour-infiltrating lymphocytes was performed on the adjacent part of the biopsy used for RNA extraction for all biopsies, while direct quantitation by qRT-PCR of lymphocyte-specific mRNA transcripts were performed on RNA also subjected to expression analysis. Relative expression values of PDGF family members were combined with a cDNA microarray dataset and analyzed based on clinical findings and PDGF expression patterns. Ingenuity Pathway Analysis (IPA) was used to elucidate potential molecular interactions and networks.</p> <p>Results</p> <p>PDGF family members were differentially regulated at the mRNA level in PTC as compared to normal thyroid specimens. Expression of <it>PDGFA </it>(p = 0.003), <it>PDGFB </it>(p = 0.01) and <it>PDGFC </it>(p = 0.006) were significantly up-regulated in PTCs compared to non-neoplastic thyroid tissue. In addition, expression of <it>PDGFC </it>was significantly up-regulated in classical PTCs as compared to clinically aggressive PTCs (p = 0.006), and <it>PDGFRB </it>were significantly up-regulated in clinically aggressive PTCs (p = 0.01) as compared to non-neoplastic tissue. Semiquantitative assessment of lymphocytes correlated well with quantitation of lymphocyte-specific gene expression. Further more, by combining TaqMan and microarray data we found a strong inverse correlation between <it>PDGFC </it>expression and the expression of lymphocyte specific mRNAs.</p> <p>Conclusion</p> <p>At the mRNA level, several members of the PDGF family are differentially expressed in PTCs as compared to normal thyroid tissue. Of these, only the <it>PDGFC </it>mRNA expression level initially seemed to distinguish classical PTCs from the more aggressive PTCs. However, further investigation showed that <it>PDGFC </it>expression level correlated inversely to the expression of several lymphocyte specific genes, and to the presence of lymphocytes in the biopsies. Thus, we find that <it>PDGFC </it>mRNA expression were down-regulated in biopsies containing infiltrated lymphocytes or thyroiditis. No other PDGF family member could be linked to lymphocyte specific gene expression in our collection of PTCs biopsies.</p

    Primary Hyperparathyroidism Influences the Expression of Inflammatory and Metabolic Genes in Adipose Tissue

    Get PDF
    Background: Primary hyperparathyroidism (PHPT) is characterised by increased production of parathyroid hormone (PTH) resulting in elevated serum calcium levels. The influence on bone metabolism with altered bone resorption is the most studied clinical condition in PHPT. In addition to this, patients with PHPT are at increased risk of non-skeletal diseases, such as impaired insulin sensitivity, arterial hypertension and increased risk of death by cardiovascular diseases (CVD), possibly mediated by a chronic low-grade inflammation. The aim of this study was to investigate whether adipose tissue reflects the low-grade inflammation observed in PHPT patients. Methodology/Principal Findings: Subcutaneous fat tissue from the neck was sampled from 16 non-obese patients with PHPT and from 16 patients operated for benign thyroid diseases, serving as weight-matched controls. RNA was extracted and global gene expression was analysed with Illumina BeadArray Technology. We found 608 differentially expressed genes (q-value,0.05), of which 347 were up-regulated and 261 were down-regulated. Gene ontology analysis showed that PHPT patients expressed increased levels of genes involved in immunity and defense (e.g. matrix metallopeptidase 9, S100 calcium binding protein A8 and A9, CD14, folate receptor 2), and reduced levels of genes involved in metabolic processes. Analysis of transcription factor binding sites present in the differentially expressed genes corroborated the up-regulation of inflammatory processes. Conclusions/Significance: Our findings demonstrate that PHPT strongly influences gene regulation in fat tissue, which may result in altered adipose tissue function and release of pathogenic factors that increase the risk of CVD

    Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors.

    No full text
    The N-termini of 80-90% of human proteins are acetylated by the N-terminal acetyltransferases (NATs), NatA-NatF. The major NAT complex, NatA, and particularly the catalytic subunit hNaa10 (ARD1) has been implicated in cancer development. For example, knockdown of hNaa10 results in cancer cell death and the arrest of cell proliferation. It also sensitized cancer cells to drug-induced cytotoxicity. Human NatE has a distinct substrate specificity and is essential for normal chromosome segregation. Thus, NAT inhibitors may potentially be valuable anticancer therapeutics, either directly or as adjuvants. Herein, we report the design and synthesis of the first inhibitors targeting these enzymes. Using the substrate specificity of the enzymes as a guide, we synthesized three bisubstrate analogues that potently and selectively inhibit the NatA complex (CoA-Ac-SES4; IC50 = 15.1 muM), hNaa10, the catalytic subunit of NatA (CoA-Ac-EEE4; Ki = 1.6 muM), and NatE/hNaa50 (CoA-Ac-MLG7; Ki* = 8 nM); CoA-Ac-EEE4 is a reversible competitive inhibitor of hNaa10, and CoA-Ac-MLG7 is a slow tight binding inhibitor of hNaa50. Our demonstration that it is possible to develop NAT selective inhibitors should assist future efforts to develop NAT inhibitors with more drug-like properties that can be used to chemically interrogate in vivo NAT function

    Patient characteristics at inclusion (n = 52).

    No full text
    <p>Values are given as mean (SD) or median (25<sup>th</sup> to 75<sup>th</sup> percentile). PHPT, primary hyperparathyroidism; BMI, body-mass index; PTH, parathyroid hormone; iCa, ionised calcium; APL, alkaline phosphatase; eGFR, estimated glomerular filtration rate; ALAT, alanine transaminase; CRP, C-reactive protein; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)<sub>2</sub>D, 1,25-dihydroxyvitamin D.</p>a<p>Values are numbers (percentages).</p

    Relations between the genotype variations of the SNPs studied and bone mineral density in lumbar spine, femoral neck and distal radius.

    No full text
    <p>SNP, single nucleotide polymorphism; VDR, vitamin D receptor.</p>1<p>p-values are based on linear regression with age, gender and body mass index as covariates. Minor allele considered as dominant.</p>2<p>p-values are based on linear regression with age, gender and body mass index as covariates. Minor allele considered as recessive. After Bonferroni-correction a p-value <0.007 is considered to be statistically significant.</p

    Patients divided into tertiles according to serum levels of PTH.

    No full text
    <p>Values are given as mean (standard deviation) or median (25th–75th percentile). PTH, 1,25(OH)<sub>2</sub>D and ALP were log-transformed before used in the analyses. BMI, body mass index; PHPT, primary hyperparathyroidism; PTH, parathyroid hormone; iCa, ionised calcium; APL, alkaline phosphatase; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)<sub>2</sub>D, 1,25-dihydroxyvitamin D; eGFR, estimated glomerular filtration rate; BMD, bone mineral density. P-values for linear trend over tertiles.</p>a<p>Values are numbers (percentages), differences across tertiles are assessed with a chi-square test.</p>d<p>Age, BMI and gender were used as covariates.</p

    Patients divided into tertiles according to serum levels of 1,25(OH)<sub>2</sub>D.

    No full text
    <p>Values are given as mean (standard deviation) or median (25th–75th percentile). PTH, 1,25(OH)<sub>2</sub>D and ALP were log-transformed before used in the analyses. BMI, body mass index; PHPT, primary hyperparathyroidism; PTH, parathyroid hormone; iCa, ionised calcium; APL, alkaline phosphatase; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH)<sub>2</sub>D, 1,25-dihydroxyvitamin D; eGFR, estimated glomerular filtration rate; BMD, bone mineral density. P-values for linear trend over tertiles.</p>a<p>Values are numbers (percentages), differences across tertiles are assessed with a chi-square test.</p>d<p>Age, BMI and gender were used as covariates.</p
    corecore