39 research outputs found

    Valence fluctuation mediated superconductivity in CeCu2Si2

    Full text link
    It has been proposed that there are two types of superconductivity in CeCu2Si2, mediated by spin fluctuations at ambient pressure, and by critical valence fluctuations around a charge instability at a pressure P_v \simeq 4.5 GPa. We present in detail some of the unusual features of this novel type of superconducting state, including the coexistence of superconductivity and huge residual resistivity of the order of the Ioffe-Regel limit, large and pressure dependent resistive transition widths in a single crystal measured under hydrostatic conditions, asymmetric pressure dependence of the specific heat jump shape, unrelated to the resistivity width, and negative temperature dependence of the normal state resistivity below 10 K at very high pressure.Comment: 4 pages, 4 figures; Proceedings SCES '0

    Magnetocrystalline anisotropy in RAu_{2}Ge_{2} (R = La, Ce and Pr) single crystals

    Full text link
    Anisotropic magnetic properties of single crystalline RAu_{2}Ge_{2} (R = La, Ce and Pr) compounds are reported. LaAu_{2}Ge_{2} exhibit a Pauli-paramagnetic behavior whereas CeAu_{2}Ge_{2} and PrAu_{2}Ge_{2} show an antiferromagnetic ordering with N\grave{e}el temperatures T_{N} = 13.5 and 9 K, respectively. The anisotropic magnetic response of Ce and Pr compounds establishes [001] as the easy axis of magnetization and a sharp spin-flip type metamagnetic transition is observed in the magnetic isotherms. The resistance and magnetoresistance behavior of these compounds, in particular LaAu_{2}Ge_{2}, indicate an anisotropic Fermi surface. The magnetoresistivity of CeAu_{2}Ge_{2} apparently reveals the presence of a residual Kondo interaction. A crystal electric field analysis of the anisotropic susceptibility in conjunction with the experimentally inferred Schottky heat capacity enables us to propose a crystal electric field level scheme for Ce and Pr compounds. For CeAu_{2}Ge_{2} our values are in excellent agreement with the previous reports on neutron diffraction. The heat capacity data in LaAu_{2}Ge_{2} show clearly the existence of Einstein contribution to the heat capacity.Comment: Submitted to PRB 11 Pages 13 Figure

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Signatures of valence fluctuations in CeCu2Si2 under high pressure

    Full text link
    Simultaneous resistivity and a.c.-specific heat measurements have been performed under pressure on single crystalline CeCu2Si2 to over 6 GPa in a hydrostatic helium pressure medium. A series of anomalies were observed around the pressure coinciding with a maximum in the superconducting critical temperature, TcmaxT_c^{max}. These anomalies can be linked with an abrupt change of the Ce valence, and suggest a second quantum critical point at a pressure Pv4.5P_v \simeq 4.5 GPa, where critical valence fluctuations provide the superconducting pairing mechanism, as opposed to spin fluctuations at ambient pressure. Such a valence instability, and associated superconductivity, is predicted by an extended Anderson lattice model with Coulomb repulsion between the conduction and f-electrons. We explain the T-linear resistivity found at PvP_v in this picture, while other anomalies found around PvP_v can be qualitatively understood using the same model.Comment: Submitted to Phys. Rev.

    Crystalline-Electric-Field Effect on the Resistivity of Ce-based Heavy Fermion Systems

    Full text link
    The behavior of the resistivity of Ce-based heavy fermion systems is studied using a 1/NN-expansion method a la Nagoya, where NN is the spin-orbital degeneracy of f-electrons. The 1/NN-expansion is performed in terms of the auxiliary particles, and a strict requirement of the local constraints is fulfilled for each order of 1/N. The physical quantities can be calculated over the entire temperature range by solving the coupled Dyson equations for the Green functions self-consistently at each temperature. This 1/N-expansion method is known to provide asymptotically exact results for the behavior of physical quantities in both low- and high-energy regions when it is applied to a single orbital periodic Anderson model (PAM). On the basis of a generalized PAM including crystalline-electric-field splitting with a single conduction band, the pressure dependence of the resistivity is calculated by parameterizing the effect of pressure as the variation of the hybridization parameter between the conduction electrons and f-electrons. The main result of the present study is that the double-peak structure of the TT-dependence of the resistivity is shown to merge into a single-peak structure with increasing pressure.Comment: 37 pages, 22 figure

    Effect of band filling in the Kondo lattice: A mean-field approach

    Full text link
    The usual Kondo-lattice, including an antiferromagnetic exchange interaction between nearest-neighboring localized spins, is treated here in a mean-field scheme that introduces two mean-field parameters: one associated with the local Kondo effect, and the other related to the magnetic correlations between localized spins. Phases with short-range magnetic correlations or coexistence between those and the Kondo effect are obtained. By varying the number of electrons in the conduction band, we notice that the Kondo effect tends to be suppressed away from half filling, while magnetic correlations can survive if the Heisenberg coupling is strong enough. An enhanced linear coefficient of the specific heat is obtained at low temperatures in the metallic state.Comment: 7 pages, ReVTeX two-column, 7 figure

    Meta-orbital Transition in Heavy-fermion Systems: Analysis by Dynamical Mean Field Theory and Self-consistent Renormalization Theory of Orbital Fluctuations

    Full text link
    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions by means of dynamical mean field theory combined with the static mean field approximation of the intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between the two orbital states, when the total f-electron number per site n_f is n_f ~ 1. We show that a "meta-orbital" transition, at which the occupancy of the two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons are smaller than that between the excited f-electron orbital and conduction electrons. Near the meta-orbital critical end point, the orbital fluctuations are enhanced, and couple with the charge fluctuations. A critical theory of the meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to the orbital fluctuations. The critical end point, first-order transition and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl2, CeCu2Si2, CeCu2Ge2 and the related compounds, which all have low-lying crystalline-electric-field excited states.Comment: 11 pages, 6 figures, J. Phys. Soc. Jpn. 79, (2010) 11471

    Fermi-liquid instabilities at magnetic quantum phase transitions

    Full text link
    This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both the existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion extended, refs added; (v3) shortened; final version as publishe

    Mass Enhancement in an Intermediate-Valent Regime of Heavy-Fermion Systems

    Full text link
    We study the mechanism of the mass enhancement in an intermediate-valent regime of heavy-fermion materials. We find that the crossovers between the Kondo, intermediate valent, and almost empty f-electron regimes become sharp with the Coulomb interaction between the conduction and f electrons. In the intermediate-valent regime, we find a substantial mass enhancement, which is not expected in previous theories. Our theory may be relevant to the observed nonmonotonic variation in the effective mass under pressure in CeCu2Si2 and the mass enhancement in the intermediate-valent compounds alpha-YbAlB4 and beta-YbAlB4.Comment: 4 pages, 4 figure
    corecore