220 research outputs found
Aetiology, Risk Factors, and Biomarkers in Systemic Sclerosis with Interstitial Lung Disease
Systemic sclerosis (SSc) is a complex, multi-organ, autoimmune disease. Lung fibrosis occurs in ~80% of patients with SSc; 25-30% develop progressive interstitial lung disease (ILD). The pathogenesis of fibrosis in SSc associated ILD (SSc-ILD) involves cellular injury, activation/differentiation of mesenchymal cells and morphological/biological changes in epithelial/endothelial cells. Risk factors for progressive SSc-ILD include older age, male sex, lung involvement on baseline high-resolution computed tomography, reduced diffusing capacity for carbon monoxide and reduced forced vital capacity. SSc-ILD is characterized by genetic risk architecture distinct from that associated with idiopathic pulmonary fibrosis (IPF). Presence of anti-Scl-70 antibodies and absence of anti-centromere antibodies indicate increased likelihood of progressive ILD. Elevated levels of serum Krebs von den Lungen-6 (KL6) and CRP are associated with SSc-ILD severity, although whether KL6 independently predicts SSc-ILD progression remains controversial. A promising prognostic indicator is serum chemokine (C-C motif) ligand 18. SSc-ILD shares similarities with IPF, although clear differences exist. Histologically, a non-specific interstitial pneumonia pattern is commonly observed in SSc-ILD, whereas IPF is defined by usual interstitial pneumonia. The course of SSc-ILD is variable, ranging from minor, stable disease to a progressive course, while all IPF patients experience progression of disease. Although appropriately treated SSc-ILD patients have better chances of stabilization and survival, a relentlessly progressive course, akin to IPF, is seen in a minority. Better understanding of cellular and molecular pathogenesis, genetic risk and distinctive features of SSc-ILD, and identification of robust prognostic biomarkers are needed for optimal disease management. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Molecular targets for therapy in systemic sclerosis
Despite significant advances have been made in the recent years regarding organ-specific therapies, there is no approved 'disease-modifying' antifibrotic drug for systemic sclerosis (SSc) available to date. Although non-selective immunosuppressive agents are routinely used to treat patients with SSc, large well-controlled studies are lacking for almost all immunosuppressive agents and further evidence is required for long-term beneficial effects of these drugs. Considering these facts about immunosuppressive agents in SSc and also considering the high mortality of SSc, other therapeutic strategies are urgently needed. Recently an important role of the 5-hydroxytryptamine (5-HT: serotonin) pathway in fibrosis was reported. In this review, we discuss the role of 5-HT in fibrosis and therapeutic potential of this molecule. Besides 5-HT, there are a number of promising targets that have been extensively characterized in recent years. For many of these molecular targets, modifiers are readily available for clinical studies, and often these modifiers are used already in clinical use for other diseases. Results from these studies will show, in how far the promising preclinical results for novel antifibrotic strategies can be translated to clinical practice
Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis
<p>Abstract</p> <p>Background</p> <p>Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensitive skin, they may prove to be a useful model to examine the mechanisms underlying skin radiation injury, protection, mitigation and treatment.</p> <p>Methods</p> <p>The hind limbs of TSK and parental control C57BL/6 mice received a radiation exposure sufficient to cause approximately the same level of acute injury. Endpoints included skin damage scored using a non-linear, semi-quantitative scale and tissue fibrosis assessed by measuring passive leg extension. In addition, TGF-β1 cytokine levels were measured monthly in skin tissue.</p> <p>Results</p> <p>Contrary to our expectations, TSK mice were more resistant (i.e. 20%) to radiation than parental control mice. Although acute skin reactions were similar in both mouse strains, radiation injury in TSK mice continued to decrease with time such that several months after radiation there was significantly less skin damage and leg contraction compared to C57BL/6 mice (p < 0.05). Consistent with the expected association of transforming growth factor beta-1 (TGF-β1) with late tissue injury, levels of the cytokine were significantly higher in the skin of the C57BL/6 mouse compared to TSK mouse at all time points (p < 0.05).</p> <p>Conclusion</p> <p>TSK mice are not recommended as a model of scleroderma involving radiation injury. The genetic and molecular basis for reduced radiation injury observed in TSK mice warrants further investigation particularly to identify mechanisms capable of reducing tissue fibrosis after radiation injury.</p
Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring
Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years
When to rebuild or when to adjust scorecards
Data-based scorecards, such as those used in credit scoring, age with time and need to be rebuilt or readjusted. Unlike the huge literature on modelling the replacement and maintenance of equipment there have been hardly any models that deal with this problem for scorecards. This paper identifies an effective way of describing the predictive ability of the scorecard and from this describes a simple model for how its predictive ability will develop. Using a dynamic programming approach one is then able to find when it is optimal to rebuild and when to readjust a scorecard. Failing to readjust or rebuild a scorecard when they aged was one of the defects in credit scoring identified in the investigations into the sub-prime mortgage crisis
Epigenetic Alterations Are Critical for Fear Memory Consolidation and Synaptic Plasticity in the Lateral Amygdala
Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA
Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression
Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds
Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines
The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines
Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint
The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential
- …