24 research outputs found

    Determining the duration of Aphis glycines (Hemiptera: Aphididae) induced susceptibility effect in soybean

    Get PDF
    Insect herbivores can increase the suitability of host plants for conspecifics by inducing susceptibility. Induced susceptibility can be separated into feeding facilitation, whereby herbivore feeding increases performance of conspecifics regardless of the genotype of the herbivore or plant, and obviation of resistance, whereby feeding by a virulent herbivore increases performance of avirulent conspecifics on resistant plants. Both forms occur between Aphis glycines (Hemiptera: Aphididae) and soybean. In natural and agricultural settings, A. glycines populations can colonize plants for brief periods before emigrating or being removed due to predation or insecticides. It is unclear if induced susceptibility lasts beyond the period when A. glycines are present on the plant. We measured the duration of induced susceptibility in the A. glycines-soybean system within a growth chamber by removing inducer populations after 24 h. We used an A. glycines-resistant soybean infested with an inducer population of either virulent, avirulent, or no aphids. Response populations of either virulent or avirulent aphids were added at three post-infestation times (24, 120, 216 h) and their densities measured 11 days after infestation. Feeding facilitation was lost within 24 h of the removal of avirulent inducer populations, and obviation of resistance diminished over time and was completely lost within 216 h of the removal of the virulent inducer populations. We discuss how these results support a hypothesis that virulence in A. glycines is due to effector proteins secreted by feeding aphids. We suggest that the duration of induced susceptibility may impact the durability of A. glycines resistance in soybean

    Native Solitary Bees Provide Economically Significant Pollination Services to Confection Sunflowers (\u3ci\u3eHelianthus annuus\u3c/i\u3e L.) (Asterales: Asteraceae) Grown Across the Northern Great Plains

    Get PDF
    The benefits of insect pollination to crop yields depend on genetic and environmental factors including plant selffertility, pollinator visitation rates, and pollinator efficacy. While many crops benefit from insect pollination, such variation in pollinator benefits across both plant cultivars and growing regions is not well documented. In this study, across three states in the northern Great Plains, United States, from 2016 to 2017, we evaluated the pollinatormediated yield increases for 10 varieties of confection sunflowers, Helianthus annuus L. (Asterales: Asteraceae), a plant that is naturally pollinator-dependent but was bred for self-fertility. We additionally measured pollinator visitation rates and compared per-visit seed set across pollinator taxa in order to determine the most efficacious sunflower pollinators. Across all locations and hybrids, insect pollination increased sunflower yields by 45%, which is a regional economic value of over 40millionandanationalvalueofover40 million and a national value of over 56 million. There was, however, some variation in the extent of pollinator benefits across locations and plant genotypes, and such variation was significantly related to pollinator visitation rates, further highlighting the value of pollinators for confection sunflowers. Female Andrena helianthi Robertson (Hymenoptera: Andrenidae) and Melissodes spp. (Hymenoptera: Apidae) were the most common and effective pollinators, while other bees including managed honey bees (Hymenoptera: Halictidae), Apis mellifera L. (Hymenoptera: Apidae), small-bodied sweat bees (Hymenoptera: Halictidae), bumble bees Bombus spp. (Hymenoptera: Apidae), and male bees were either infrequent or less effective on a per-visit basis. Our results illustrate that wild bees, in particular the sunflower specialists A. helianthi and Melissodes spp., provide significant economic benefits to confection sunflower production

    Transcriptome Profiling of Interaction Effects of Soybean Cyst Nematodes and Soybean Aphids on Soybean

    Get PDF
    Soybean aphid (Aphis glycines; SBA) and soybean cyst nematode (Heterodera glycines; SCN) are two major pests of soybean (Glycine max) in the United States of America. This study aims to characterize three-way interactions among soybean, SBA, and SCN using both demographic and genetic datasets. SCN-resistant and SCN-susceptible soybean cultivars with a combination of soybean aphids (biotype 1) and SCN (HG type 0) in a randomized complete block design (RCBD) with six blocks were used to evaluate the three-way interactions in a greenhouse setup. Treatments receiving SCN were infested at planting with 2000 nematode eggs, and the treatments with soybean aphids were infested at second trifoliate growth stage (V2) with 15 soybean aphids. The whole roots were sampled from plants at 5 and 30 days post SBA infestation for RNA sequencing using Illumina Hiseq. 3000. The data comprises of 47 libraries that are useful for further analyses of important genes, which are involved in interaction effects of SBA and SCN on soybean

    Spatial Patterns and Sequential Sampling Plans for Estimating Densities of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (\u3e100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean

    Community Composition, Abundance, and Phenology of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country’s total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States

    Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United StatesPheylan

    Get PDF
    Stink bugs (Hemiptera: Pentatomidae) are agricultural pests of increasing significance in the North Central Region of the United States, posing a threat to major crops such as soybean. Biological control can reduce the need for insecticides to manage these pests, but the parasitism of stink bugs byTachinidae (Diptera) is poorly characterized in this region. The objective of this study was to evaluate the rate of parasitism of stink bugs by tachinids over 2 yr from nine states across the North Central Region. Parasitism was assessed by quantifying tachinid eggs on the integument of stink bug adults. Parasitism rates (i.e., percent of adult stink bugs with tachinid eggs) were compared across stink bug species, states, stink bug sex, and years.The mean percent parasitism of stink bugs by tachinids was about 6% across the region and did not differ among stink bug species. Mean percent parasitism was significantly higher in Missouri than in northern and western states. In addition, male stink bugs had significantly higher mean percent parasitism than females. Stink bug species commonly found in soybean in the region showed some parasitism and are therefore potentially vulnerable to oviposition by these parasitoids.This is the first study to characterize the level of parasitism of stink bugs by tachinids across the North Central Region

    Spatial Patterns and Sequential Sampling Plans for Estimating Densities of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (\u3e100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean

    Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers

    Get PDF
    Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + N ST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + N ST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike
    corecore