7 research outputs found
Polaron dynamics in thin polythiophene films studied with time-resolved photoemission
Femtosecond time-resolved two-photon photoemission spectroscopy is employed to
study the dynamics of an excited state in a thin regioregular
poly(3-hexylthiophene) (RR-P3HT) film deposited on a conducting polymer
poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate) (PEDT:PSS)
electrode following optical excitation at 2.1 eV. We found that the
biexponential decay of this excited state has a fast component (2.6 ps)
assigned to bound polaron pairs which recombine quickly or separate to be
added to the slow component (7.6 ps). The latter is attributed to polarons
generated via charge transfer between adjacent polymer chains
Dynamics of optically excited electrons in the conducting polymer PEDT:PSS
Femtosecond time-resolved two-photon photoemission spectroscopy is employed to
study the dynamics of the non-equilibrium electron distribution in the
conducting polymer poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate)
(PEDT:PSS) film following optical excitation at 2.1 eV. We found that the
electron thermalization occurs on a ultrafast timescale of around 60 fs
analogous to the relaxation times of optically excited electrons in Au(111)
Ultrafast Exciton Population, Relaxation, and Decay Dynamics in Thin Oligothiophene Films
Femtosecond time-resolved two-photon photoemission spectroscopy is utilized to
determine the electronically excited states dynamics at the α-sexithiophene
(6T)/Au(111) interface and within the 6T film. We found that a photoinduced
transition between the highest occupied molecular orbital and lowest
unoccupied molecular orbital is essential in order to observe exciton
population, which occurs within 100 fs. In thin 6T films, the exciton exhibits
a lifetime of 650 fs. On a time scale of 400 fs, an energetic stabilization is
observed leading to the formation of a polaron or electron trapping at defect
states. The lifetime of this state is 6.3 ps. Coverage-dependent measurements
show that apart from the excited state decay within the film, a substrate-
mediated relaxation channel is operative. The present study demonstrates that
two-photon photoemission spectroscopy is a powerful tool to investigate the
whole life cycle from creation to decay of excitons in an organic
semiconductor
Coverage-dependent adsorption geometry of octithiophene on Au(111)
The adsorption behavior of α-octithiophene (8T) on the Au(111) surface as a
function of 8T coverage has been studied with low-temperature scanning
tunneling microscopy, high resolution electron energy loss spectroscopy as
well as with angle-resolved two-photon photoemission and ultraviolet
photoemission spectroscopy. In the sub-monolayer regime 8T adopts a flat-lying
adsorption geometry. Upon reaching the monolayer coverage the orientation of
8T molecules changes towards a tilted configuration, with the long molecular
axis parallel to the surface plane, facilitating attractive intermolecular
π–π-interactions. The photoemission intensity from the highest occupied
molecular orbitals (HOMO and HOMO − 1) possesses a strong dependence on the
adsorption geometry due to the direction of the involved transition dipole
moment for the respective photoemission process. The change in molecular
orientation as a function of coverage in the first molecular layer mirrors the
delicate balance between intermolecular and molecule/substrate interactions.
Fine tuning of these interactions opens up the possibility to control the
molecular structure and accordingly the desirable functionality
Exziton- und Polarondynamik in duennen Oligo- und Polithiophenfilmen
In the framework of this thesis the exciton and polaron dynamics in thin
oligo- and polythiophene films have been investigated. Two-photon
photoemission (2PPE) has been employed to study the electronic structure as
well as the exciton formation, relaxation and decay dynamics in the
oligothiophene films and at their interface with Au(111). Performing coverage,
photon-energy-dependent and time-resolved experiments on sexithiophene
(6T)/Au(111), we found that a photoinduced electron transition between the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) is essential in order to observe the population of a Frenkel
exciton that takes place within 100 femtoseconds (fs). In thin 6T films the
exciton exhibits a lifetime of 650 fs. On a timescale of 400 fs an energetic
stabilization is observed resulting in the formation of a polaron or electron
trapping at defect states. The lifetime of this state is 6 picoseconds (ps).
Moreover, beside the intramolecular relaxation channel of the exciton and the
polaron/trap, a substratemediated relaxation channel exists. In order to
investigate the influence of the adsorption geometry on the excited state
dynamics, we have studied an alkyl-substituted 6T, namely alpha, omega-
dihexylsexithiophene (DH6T) on Au(111). The exciton and polaron/trap dynamics
is 5-6 times faster in DH6T compared to 6T. We believe that the wall-brick-
like adsorption geometry of DH6T is responsible for this behavior. Indeed, the
alkyl chains in DH6T act as spacers between the 6T cores of neighboring
molecules, thus reducing stabilization effects due to intermolecular
interactions. Furthermore, by means of scanning tunneling microscopy (STM) and
surface vibrational spectroscopy we have demonstrated a change in the
adsorption geometry of alpha-octithiophene (8T) on Au(111), from flat-lying in
the submonolayer to a tilted geometry with the long axis parallel to the
substrate in the monolayer. This tilted configuration leads to a strong
electronic decoupling between the Frenkel exciton and the metal substrate,
leading to the suppression of the substrate-mediated relaxation channel in
8T/Au(111). Finally we have applied time-resolved 2PPE to study the hot
electron dynamics in poly(3,4-ethylene-dioxythiophene):
poly-(styrenesulfonate) (PEDT:PSS) and the excited state dynamics in
regioregular poly(3-hexylthiophene) (RR-P3HT). The latter shows a
biexponential decay, with the fast component (2.6 ps) assigned to bound
polaron pairs which recombine quickly or separate to be added to the slow
component (7.6 ps) that is attributed to polarons generated via charge
transfer between adjacent polymer chains. The present study shows that 2PPE is
the ideal tool to study the dynamics of excited states in small organic
molecules as well as in polymers. Therefore this method promises to provide a
link between optical and electron spectroscopy.Im Rahmen dieser Arbeit wurden die Exziton- und Polarondynamik in duennen
Oligo- und Polythiophenfilmen untersucht. Dabei wurde mithilfe der Zwei-
Photonen Photoemission (2PPE) sowohl die elektronische Struktur, als auch die
Bildungs-, Relaxation-, und Zerfallsdynamik von Exzitonen in duennen
Oligothiophenfilmen und an der Grenzoberflaeche mit der Au(111)-Oberflaeche
untersucht. Bedeckungs- und photonenenergieabhaengige Messungen, sowie
zeitaufgeloeste Experimente an alpha-Sexithiophen (6T)/Au(111) haben gezeigt,
dass ein Uebergang vom hoechsten besetzen Molekuelorbital (HOMO) zum
niedrigsten unbesetzten Molekuelorbital (LUMO) fuer die Population eines
Frenkel-Exzitons unerlaesslich ist. Die Bildung dieses Exzitonzustandes
erfolgt auf einer Zeitskala von 100 Femtosekunden (fs), und weist in duennen
Filmen eine Lebensdauer von 600 fs auf. Des Weiteren wurde eine energetische
Stabilisierung dieses angeregten Zustandes innerhalb von 400 fs beobachtet,
welche von der Bildung eines Polarons oder eines an Defektstellen gebundenen
Elektrons herruehrt. Dieses Polaron/gebundenes Elektron verfuegt ueber eine
Lebensdauer von 6 Picosekunden (ps). Es existiert ein intramolekularer und ein
substrat-induzierter Zerfallskanal. Um den Einfluss der Adsorptionsgeometrie
auf die Dynamik der angeregten Zustaende zu untersuchen, wurden Experimente
mit dem alkylsubsituierten 6T, naemlich alpha,omega-Dihexylsexithiophen (DH6T)
auf Au(111) durchgefuehrt. Im Vergleich zu 6T zerfallen das Exziton und das
Polaron/gebundenes Elektron 5-6 mal schneller. Wir gehen davon aus, dass die
Adsorptionsgeometrie von DH6T fuer diese schnellere Zerfallsdynamik
verantwortlich ist. In der Tat vergroessern die Dihexylketten den Abstand
zwischen den Thiopheneinheiten benachbarter Molekuele und reduzieren dadurch
die stabilisierenden intermolekularen Wechselwirkungen. Darueberhinaus haben
wir im Falle von alpha-Octithiophene (8T)/Au(111) mittels Rastertunnel
Mikroskopie (STM) sowie schwingungsspektroskopisch eine bedeckungsabhaengige
Aenderung der Adsorptionsgeometrie beobachtet. Waehrend die 8T Molekuele im
Submonolagenbereich flach auf Au(111) adsorbieren, nehmen sie ab Bedeckungen
von einer Monolage eine Adsorptionsgeometrie ein, in der das Molekuelrueckgrat
parallel zur Oberflaeche verkippt ist. Diese Konfiguration fuehrt zu einer
starken elektronischen Entkopplung des Frenkel-Exzitons von der
Metalloberflaeche, was zur Unterdrueckung des substrat-induzierten
Zerfallkanals fuehrt. Schliesslich haben wir mittels zeitaufgeloester 2PPE die
Dynamik heisser Elektronen in Poly(3,4-ethylen-dioxythiophen):
Poly-(styrensulfonat) und die Dynamik angeregter Zustaende in regioregularen
Poly(3-hexylthiophen) (RR-P3HT) untersucht. Letztere weist einen
biexponentiellen Zerfall auf. Die schnelle Komponente (2.6 ps) wird gebundenen
Polaronpaaren zugeordnet, welche entweder schnell rekombinieren oder sich
separieren. Die langsame Komponente (7.6 ps) wird Polaronen zugeordnet, welche
durch einen Ladungstransfer zwischen benachbarten Polymerketten entstehen
Optically Induced Inter- and Intrafacial Electron Transfer Probed by Two-Photon Photoemission: Electronic States of Sexithiophene on Au(111)
Using two-photon photoemission spectroscopy, we investigated the electronic structure of the organic semiconductor α-sexithiophene (6T) adsorbed on Au(111). Beside the quantitative determination of the energetic position of electronic states originating from the highest occupied molecular orbitals (HOMO and HOMO-1) and the lowest unoccupied molecular orbitals (LUMO and LUMO+1), a localized exciton state that possesses a binding energy of 0.9 eV has been identified. Whereas the creation of the exciton is the result of an intramolecular excitation involving a HOMO−LUMO transition, the transient population of the LUMO and LUMO+1 follow from an optically induced charge transfer from the metallic substrate to the molecule. The present study provides important parameters such as the energetic position of the transport level and the exciton binding energy, which are needed to understand the physics in organic-molecules-based optoelectronic devices