24 research outputs found

    Doped-iron oxide nanocrystals synthesized by one-step aqueous route for multi-imaging purposes

    Get PDF
    New doped inorganic nanocrystals (NC) consisting on iron oxide and other metal integrated into the structure have been synthesized in one-step by adapting the oxidant precipitation synthesis route for magnetite. Different metals have been chosen to confer extra and unique properties to the resulting magnetic hetero-nanostructure: Co and Gd for enhancing transversal and longitudinal relaxivities for magnetic resonance imaging and Bi and Au for achieving X-ray absorption for computed tomography imaging. Apart of that, gold optical properties are interesting for photothermal therapy and iron oxides for magnetic hyperthermia. All metals have been incorporated into the magnetite structure in different ways during the synthesis: by forming a solid solution, by modifying the surface of the NCs, or by co-crystallization with the magnetite. The nanostructure formed in each case depends on the ionic radius of the secondary metal ion and the solubility of its hydroxide that control the co-precipitation in the initial steps of the reaction. Magnetic properties and imaging capabilities of the hetero-nanostructures have been analyzed as a function of the element distribution. Due to the synergistic combination of the different element properties, these magnetic hetero-nanostructures have great potential for biomedical applications

    Competition between polar and nonpolar lattice distortions in oxide quantum wells: new critical thickness at polar interfaces

    Get PDF
    Two basic lattice distortions permeate the structural phase diagram of oxide perovskites: antiferrodistortive (AFD) rotations and tilts of the oxygen octahedral network and polar ferroelectric modes. With some notable exceptions, these two order parameters rarely coexist in a bulk crystal, and understanding their competition is a lively area of active research. Here we demonstrate, by using the LaAlO₃/SrTiO₃ system as a test case, that quantum confinement can be a viable tool to shift the balance between AFD and polar modes and selectively stabilize one of the two phases. By combining scanning transmission electron microscopy (STEM) and first-principles-based models, we find a crossover between a bulklike LaAlO₃ structure where AFD rotations prevail, to a strongly polar state with no AFD tilts at a thickness of approximately three unit cells; therefore, in addition to the celebrated electronic reconstruction, our work unveils a second critical thickness, related not to the electronic properties but to the structural ones. We discuss the implications of these findings, both for the specifics of the LaAlO₃/SrTiO₃ system and for the general quest towards nanoscale control of material properties

    Effect of different buffer layers on the quality of InGaN layers grown on Si

    Get PDF
    This work studies the effect of four different types of buffer layers on the structural and optical properties of InGaN layers grown on Si(111) substrates and their correlation with electrical characteristics. The vertical electrical conduction of n-InGaN/buffer-layer/p-Si heterostructures, with In composition near 46%, which theoretically produces an alignment of the bands, is analyzed. Droplet elimination by radical-beam irradiation was successfully applied to grow high quality InGaN films on Si substrates for the first time. Among several buffer choices, an AlN buffer layer with a thickness above 24 nm improves the structural and optical quality of the InGaN epilayer while keeping a top to bottom ohmic behavior. These results will allow fabricating double-junction InGaN/Si solar cells without the need of tunnel junctions between the two sub-cells, therefore simplifying the device design

    Modified magnetic anisotropy at LaCoO_(3)/La_(0.7)Sr_(0.3)MnO_(3) interfaces

    Get PDF
    Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO) with an ultrathin LaCoO3 (LCO) layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices

    Ferroionic inversion of spin polarization in a spin-memristor

    Get PDF
    Magnetoelectric coupling in artificial multiferroic interfaces can be drastically affected by the switching of oxygen vacancies and by the inversion of the ferroelectric polarization. Disentangling both effects is of major importance toward exploiting these effects in practical spintronic or spinorbitronic devices. We report on the independent control of ferroelectric and oxygen vacancy switching in multiferroic tunnel junctions with a La_(0.7)Sr_(0.3)MnO_3 bottom electrode, a BaTiO_3 ferroelectric barrier, and a Ni top electrode. We show that the concurrence of interface oxidation and ferroelectric switching allows for the controlled inversion of the interface spin polarization. Moreover, we show the possibility of a spin-memristor where the controlled oxidation of the interface allows for a continuum of memresistance states in the tunneling magnetoresistance. These results signal interesting new avenues toward neuromorphic devices where, as in practical neurons, the electronic response is controlled by electrochemical degrees of freedom

    Controlled sign reversal of electroresistance in oxide tunnel junctions by electrochemical-ferroelectric coupling

    Get PDF
    The persistence of ferroelectricity in ultrathin layers relies critically on screening or compensation of polarization charges which otherwise destabilize the ferroelectric state. At surfaces, charged defects play a crucial role in the screening mechanism triggering novel mixed electrochemical-ferroelectric states. At interfaces, however, the coupling between ferroelectric and electrochemical states has remained unexplored. Here, we make use of the dynamic formation of the oxygen vacancy profile in the nanometerthick barrier of a ferroelectric tunnel junction to demonstrate the interplay between electrochemical and ferroelectric degrees of freedom at an oxide interface. We fabricate ferroelectric tunnel junctions with a La_0.7Sr_0.3MnO_3 bottom electrode and BaTiO_3 ferroelectric barrier. We use poling strategies to promote the generation and transport of oxygen vacancies at the metallic top electrode. Generated oxygen vacancies control the stability of the ferroelectric polarization and modify its coercive fields. The ferroelectric polarization, in turn, controls the ionization of oxygen vacancies well above the limits of thermodynamic equilibrium, triggering the build up of a Schottky barrier at the interface which can be turned on and off with ferroelectric switching. This interplay between electronic and electrochemical degrees of freedom yields very large values of the electroresistance (more than 10^6% at low temperatures) and enables a controlled switching between clockwise and counterclockwise switching modes in the same junction (and consequently, a change of the sign of the electroresistance). The strong coupling found between electrochemical and electronic degrees of freedom sheds light on the growing debate between resistive and ferroelectric switching in ferroelectric tunnel junctions, and moreover, can be the source of novel concepts in memory devices and neuromorphie computing

    Atomic-resolution studies of epitaxial strain release mechanisms in La_(1.85)Sr_(0.15)CuO_(4)/La_(0.67)Ca_(0.33)MnO_(3) superlattices

    Get PDF
    In this paper we present an atomic-resolution electron microscopy study of superlattices (SLs) where the colossal magnetoresistant manganite La_(0.67)Ca_(0.33)MnO_(3) (LCMO) and the high critical temperature superconducting cuprate La_(1.85)Sr_(0.15)CuO_(4 (LSCO) are combined. Although good quality epitaxial growth can be achieved, both the choice of substrate and the relatively large lattice mismatch between these materials (around 2%) have a significant impact on the system properties [Phys. C 468, 991 (2008); Nature (London) 394, 453 (1998)]. Our samples, grown by pulsed laser deposition, are epitaxial and exhibit high structural quality. By means of cutting-edge electron microscopy and spectroscopy techniques we still find that the epitaxial strain is accommodated by a combination of defects, such as interface steps and antiphase boundaries in the manganite. These defects result in inhomogeneous strain fields through the samples. Also, some chemical unhomogeneities are detected, up to the point that novel phases nucleate. For example, at the LCMO/LSCO interface the ABO3-type manganite adopts a tetragonal LSCO-like structure forming localized layers that locally resemble the composition of La_(2/3)Ca_(4/3)MnO_(4). Structural distortions are detected in the cuprate as well, which may extend over lateral distances of several unit cells. Finally, we also analyze the influence of the substrate-induced strain by examining superlattices grown on two different substrates: (LaAlO_(3))_(0.3)(Sr_(2)AlTaO_(6))_(0.7) (LSAT) and LaSrAlO_(4) (LSAO). We observe that SLs grown on LSAT, which are nonsuperconducting, present reduced values of the c axis compared to superlattices grown on LSAO (which are fully superconducting). This finding points to the fact that the proper distance between copper planes in LSCO is essential in obtaining superconductivity in cuprates

    Electron-electron interaction and weak localization effects in badly metallic SrRuO_(3)

    Get PDF
    We report on the effect of light ion irradiation on the low-temperature electrical resistivity of ferromagnetic SrRuO_(3) thin films. Fresh samples displayed a ferromagnetic transition at T_(c)̴ 160 K, good metallic behavior (ρ(300 K)~400μΩcm, dρ/dT>0) at room temperature, and the low-temperature upturn in the electrical resistivity commonly found in SrRuO_(3). Badly metallic films, displaying high values of the electrical resistivity (O(1000μΩcm)) and incipient nonmetallic behavior (dρ/dT<0) at low temperature, were obtained by He+ irradiation. For high enough irradiation doses, these samples did not show magnetic order down to the base temperature of our experiments. The temperature dependence of the electrical conductivity of virgin and irradiated samples is discussed in terms of a weak localization contribution plus a large electron-electron interaction term. The magnitude of the e^(-)-e^(-) contribution reflects the enhancement of strong electron correlations in SrRuO_(3) due to disorder

    Thermally assisted tunneling transport in La_(0.7)Ca_(0.3)MnO_(3)/SrTiO_(3):Nb Schottky-like heterojunctions

    Get PDF
    We report on the electrical transport properties of all-oxide La_(0.7)Ca_(0.3)MnO_(3)/SrTiO_(3):Nb heterojunctions with lateral size of just a few micrometers. The use of lithography techniques to pattern manganite pillars ensures perpendicular transport and allows exploration of the microscopic conduction mechanism through the interface. From the analysis of the current-voltage characteristics in the temperature range 20–280 K we find a Schottky-like behavior that can be described by a mechanism of thermally assisted tunneling if a temperature-dependent value of the dielectric permittivity of SrTiO_(3):Nb (NSTO) is considered. We determine the Schottky energy barrier at the interface, qVB = 1.10 ± 0.02 eV, which is found to be temperature independent, and a value of ξ = 17 ± 2 meV for the energy of the Fermi level in NSTO with respect to the bottom of its conduction band

    Crossover from a three-dimensional to purely two-dimensional vortex-glass transition in deoxygenated YBa_(2)Cu_(3)O_(7-δ) thin films

    Get PDF
    Current-voltage (I-V) characteristics were used to investigate the response of the vortex-glass (VG) phase transition in high-quality epitaxial YBa_(2)Cu_(3)O_(7-δ) films in magnetic fields up to 7 T. We show that varying the oxygen content, the scaling analysis reveals a crossover from three-dimensional (3D) to a pure 2D VG transition with T_(g) = 0. At small oxygen deficiencies (7-δ = 6.75), the ρ-j curves scale according to the 3D VG model, which cannot be distinguished from a Bose-glass model from a scaling analysis with the magnetic field applied parallel to the c axis. At a lower oxygen content (7-δ = 6.48), the VG phase transition behaves analogous to the highly anisotropic Bi_(2)Sr_(2)CaCu_(2)O_(8) samples, showing a quasi-2D VG transition. For further deoxygenated samples (7-δ = 6.4), the result is consistent with a pure 2D vortex-glass model similar to that observed in the even more anisotropic Tl_(2)Ba_(2)CaCu_(2)O_(8) thin films. The estimated value of the anisotropy in high-quality oxygen-depleted samples is comparable to that of the highly anisotropic superconductors
    corecore