114 research outputs found

    Short-term effects of angiotensin receptor-neprilysin inhibitors on diastolic strain and tissue doppler parameters in heart failure patients with reduced ejection fraction: A pilot trial

    Get PDF
    OBJECTIVE: Although sacubitril/valsartan has recently shown its long-term benefits on morbidity and mortality in symptomatic patients with chronic heart failure with reduced ejection fraction (HFrEF), its short-term effects on diastolic function remain uncertain. We sought to assess 30-day effects of sacubitril/valsartan on left ventricular (LV) diastolic paremeters determined by speckle tracking and tissue Doppler imaging (STI and TDI respectively) as well as their association with functional capacity change evaluated by peak oxygen uptake (VO2max) in stable patients with symptomatic HFrEF. METHODS: A total of 35 patients (aged 61 ± 9 years) eligible for sacubitril/valsartan underwent a complete two-dimension (2D) echocardiographic study and a cardiopulmonary exercise test at baseline and 30 days after the initiation of therapy. RESULTS: Significant improvements in ratio of trans-mitral inflow early diastolic velocity E to mitral annulus early diastolic velocity E' (ΔΕ//Ε' = -35.9%, p = 0.001), peak early diastolic strain rate SRE (ΔSRE = +22.5%, p = 0.024) and ratio E/SRE (ΔE/SRE = -33.2%, p = 0.025) were observed after 1-month therapy. Compared with baseline, VO2max also increased significantly by 16.7 % (p = 0.001). Baseline E/SRE and ΔE/SRE were the strongest independent predictors of VO2max improvement (beta = -0.43, p = 0.004 and beta = 0.45, p = 0.021 respectively) in the multivariate analysis. CONCLUSION: Sacubitril/valsartan was associated with early improvement in LV diastolic function determined by TDI and 2D STI. Baseline E/SRE was stronger than standard echocardiographic parameters in predicting the early benefit of sacubitril/valsartan therapy

    Haemodynamic Benefit of Cardiac Resynchronisation Therapy Requires Left Bundle Branch Block: A Case Report

    Get PDF
    A 55-year-old woman with dilated cardiomyopathy and rate-dependent left bundle branch block had a cardiac resynchronisation therapy (CRT) device implanted. During implantation, the maximum rate of left ventricular pressure rise (dP/dtmax) was measured invasively. This case presents a description of the acute negative effect of a left bundle branch block on dP/dtmax, and the different effect of CRT on left ventricular haemodynamic function in the presence and absence of a left bundle branch block

    Highlights of the 2009 scientific sessions of the European Society of Cardiology.

    Get PDF
    Nebivolol is a third-generation beta-adrenergic receptor antagonist (beta-blocker) with high selectivity for beta(1)-adrenergic receptors. In addition, it causes vasodilatation via interaction with the endothelial L-arginine/nitric oxide (NO) pathway. This dual mechanism of action underlies many of the haemodynamic properties of nebivolol, which include reductions in heart rate and blood pressure (BP), and improvements in systolic and diastolic function. With respect to BP lowering, the NO-mediated effects cause a reduction in peripheral vascular resistance and an increase in stroke volume with preservation of cardiac output. Flow-mediated dilatation and coronary flow reserve are also increased during nebivolol administration. Other haemodynamic effects include beneficial effects on pulmonary artery pressure, pulmonary wedge pressure, exercise capacity and left ventricular ejection fraction. In addition, nebivolol does not appear to have adverse effects on lipid metabolism and insulin sensitivity like traditional beta-blockers. The documented beneficial haemodynamic effects of nebivolol are translated into improved clinical outcomes in patients with hypertension or heart failure. In patients with hypertension, the incidence of bradycardia with nebivolol is often lower than that with other currently available beta-blockers. This, along with peripheral vasodilatation and NO-induced benefits such as antioxidant activity and reversal of endothelial dysfunction, should facilitate better protection from cardiovascular events. In addition, nebivolol has shown an improved tolerability profile, particularly with respect to events commonly associated with beta-blockers, such as fatigue and sexual dysfunction. Data from SENIORS (Study of the Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with Heart Failure) showed that significantly fewer nebivolol versus placebo recipients experienced the primary endpoint of all-cause mortality or cardiovascular hospitalization. The benefits of nebivolol therapy were shown to be cost effective. Thus, nebivolol is an effective and well tolerated agent with benefits over and above those of traditional beta-blockade because of its effects on NO release, which give it unique haemodynamic effects, cardioprotective activity and a good tolerability profile

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    A modified echocardiographic protocol with intrinsic plausibility control to determine intraventricular asynchrony based on TDI and TSI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Established methods to determine asynchrony suffer from high intra- and interobserver variability and failed to improve patient selection for cardiac resynchronization therapy (CRT). Thus, there is a need for easy and robust approaches to reliably assess cardiac asynchrony.</p> <p>Methods and Results</p> <p>We performed echocardiography in 100 healthy subjects and 33 patients with left bundle branch block (LBBB). To detect intraventricular asynchrony, we combined two established methods, i.e., tissue synchronization imaging (TSI) and tissue Doppler imaging (TDI). The time intervals from the onset of aortic valve opening (AVO) to the peak systolic velocity (S') were measured separately in six basal segments in the apical four-, two-, and three-chamber view. Color-coded TSI served as an intrinsic plausibility control and helped to identify the correct S' measuring point in the TDI curves. Next, we identified the segment with the shortest AVO-S' interval. Since this segment most likely represents vital and intact myocardium it served as a reference for other segments. Segments were considered asynchronous when the delay between the segment in question and the reference segment was above the upper limit of normal delays derived from the control population. Intra- and interobserver variability were 7.0% and 7.7%, respectively.</p> <p>Conclusion</p> <p>Our results suggest that combination of TDI and TSI with intrinsic plausibility control improves intra- and interobserver variability and allows easy and reliable assessment of cardiac asynchrony.</p

    Role of Right Ventricular Global Longitudinal Strain in Predicting Early and Long-Term Mortality in Cardiac Resynchronization Therapy Patients.

    Get PDF
    BACKGROUND: Right ventricular (RV) dysfunction has been associated with poor prognosis in chronic heart failure (HF). However, less data is available about the role of RV dysfunction in patients with cardiac resynchronization therapy (CRT). We aimed to investigate if RV dysfunction would predict outcome in CRT. DESIGN: We enrolled prospectively ninety-three consecutive HF patients in this single center observational study. All patients underwent clinical evaluation and echocardiography before CRT and 6 months after implantation. We assessed RV geometry and function by using speckle tracking imaging and calculated strain parameters. We performed multivariable Cox regression models to test mortality at 6 months and at 24 months. RESULTS: RV dysfunction, characterized by decreased RVGLS (RV global longitudinal strain) [10.2 (7.0-12.8) vs. 19.5 (15.0-23.9) %, p<0.0001] and RVFWS (RV free wall strain) [15.6 (10.0-19.3) vs. 17.4 (10.5-22.2) %, p = 0.04], improved 6 months after CRT implantation. Increasing baseline RVGLS and RVFWS predicted survival independent of other parameters at 6 months [hazard ratio (HR) = 0.37 (0.15-0.90), p = 0.02 and HR = 0.42 (0.19-0.89), p = 0.02; per 1 standard deviation increase, respectively]. RVGLS proved to be a significant independent predictor of mortality at 24 months [HR = 0.53 (0.32-0.86), p = 0.01], and RVFWS showed a strong tendency [HR = 0.64 (0.40-1.00), p = 0.05]. The 24-month survival was significantly impaired in patients with RVGLS below 10.04% before CRT implantation [area under the curve = 0.72 (0.60-0.84), p = 0.002, log-rank p = 0.0008; HR = 5.23 (1.76-15.48), p = 0.003]. CONCLUSIONS: Our findings indicate that baseline RV dysfunction is associated with poor short-term and long-term prognosis after CRT implantation

    Impact of contractile reserve on acute response to cardiac resynchronization therapy

    Get PDF
    Background: Cardiac resynchronization therapy (CRT) provides benefit for congestive heart failure, but still 30% of patients failed to respond to such therapy. This lack of response may be due to the presence of significant amount of scar or fibrotic tissue at myocardial level. This study sought to investigate the potential impact of myocardial contractile reserve as assessed during exercise echocardiography on acute response following CRT implantation. Methods: Fifty-one consecutive patients with heart failure (LV ejection fraction 27% ± 5%, 67% ischemic cardiomyopathy) underwent exercise Doppler echocardiography before CRT implantation to assess global contractile reserve (improvement in LV ejection fraction) and local contractile reserve in the region of the LV pacing lead (assessed by radial strain using speckle tracking analysis). Responders were defined by an increase in stroke volume ≥15% after CRT. Results: Compared with nonresponders, responders (25 patients) showed a greater exercise-induced increase in LV ejection fraction, a higher degree of mitral regurgitation and a significant extent of LV dyssynchrony. The presence of contractile reserve was directly related to the acute increase in stroke volume (r = 0.48, p<0.001). Baseline myocardial deformation as well as contractile reserve in the LV pacing lead region was greater in responders during exercise than in nonresponders (p<0.0001). Conclusions: Heart failure patients referred to CRT have less chance of improving under therapy if they have no significant mitral regurgitation, no LV dyssynchrony and no contractile myocardial recruitment at exercise

    Remote monitoring and follow-up of cardiovascular implantable electronic devices in the Netherlands: An expert consensus report of the Netherlands Society of Cardiology

    Get PDF
    Remote monitoring of cardiac implanted electronic devices (CIED: pacemaker, cardiac resynchronisation therapy device and implantable cardioverter defibrillator) has been developed for technical control and follow-up using transtelephonic data transmission. In addition, automatic or patient-triggered alerts are sent to the cardiologist or allied professional who can respond if necessary with various interventions. The advantage of remote monitoring appears obvious in impending CIED failures and suspected symptoms but is less likely in routine follow-up of CIED. For this follow-up the indications, quality of care, cost-effectiveneness and patient satisfaction have to be determined before remote CIED monitoring can be applied in daily practice. Nevertheless remote CIED monitoring is expanding rapidly in the Netherlands without professional agreements about methodology, responsibilities of all the parties involved and that of the device patient, and reimbursement. The purpose of this consensus document on remote CIED monitoring and follow-up is to lay the base for a nationwide, uniform implementation in the Netherlands. This report describes the technical communication, current indications, benefits and limitations of remote CIED monitoring and follow-up, the role of the patient and device manufacturer, and costs and reimbursement. The view of cardiology experts and of other disciplines in conjunction with literature was incorporated in a preliminary series of recommendations. In addition, an overview of the questions related to remote CIED monitoring that need to be answered is given. This consensus document can be used for future guidelines for the Dutch profession

    Real-time three-dimensional transthoracic echocardiography in daily practice: initial experience

    Get PDF
    <p>Abstract</p> <p>Aim of the work</p> <p>To evaluate the feasibility and possible additional value of transthoracic real-time three-dimensional echocardiography (RT3D-TTE) for the assessment of cardiac structures as compared to 2D-TTE.</p> <p>Methods</p> <p>320 patients (mean age 45 ± 8.4 years, 75% males) underwent 2D-TTE and RT3D-TTE using 3DQ-Q lab software for offline analysis. Volume quantification and functional assessment was performed in 90 patients for left ventricle and in 20 patients for right ventricle. Assessment of native (112 patients) and prosthetic (30 patients) valves morphology and functions was performed. RT3D-TTE was performed for evaluation of septal defects in 30 patients and intracardiac masses in 52 patients.</p> <p>Results</p> <p>RT3D-TTE assessment of left ventricle was feasible and reproducible in 86% of patients while for right ventricle, it was (55%). RT3D-TTE could define the surface anatomy of mitral valve optimally (100%), while for aortic and tricuspid was (88% and 81% respectively). Valve area could be planimetered in 100% for the mitral and in 80% for the aortic. RT3D-TTE provided a comprehensive anatomical and functional evaluation of prosthetic valves. RT3D-TTE enface visualization of septal defects allowed optimal assessment of shape, size, area and number of defects and evaluated the outcome post device closure. RT3D-TTE allowed looking inside the intracardiac masses through multiple sectioning, valuable anatomical delineation and volume calculation.</p> <p>Conclusion</p> <p>Our initial experience showed that the use of RT3D-TTE in the assessment of cardiac patients is feasible and allowed detailed anatomical and functional assessment of many cardiac disorders.</p
    corecore