128 research outputs found

    Buccal and topical drug delivery

    Get PDF
    The aim of this work is to investigate new and classical techniques, methods and formulations for topical and buccal release. All the formulations proposed are based on natural and biocompatible polymer matrices such as gellan gum, scleroglucan and hydroxypropylmethylcellulose. The proposed formulations are tested by in vitro release tests. In fact they represents a valid support and a useful starting point for the realization of a potentially usable in-vivo pharmaceutical formulation that may have commercial utility. The research work is both experimental and theoretical. Each topic presents a more chemical-pharmaceutical part, based on the formulation preparation and release experiments, and a more theoretical-numerical approach that allows a correct interpretation and description of the experimental data obtained. Release from hydrogels and thin films require different modelling approaches. Also the physico-mathematical description of different release experiments (different release devices such as Franz cell, millifluidic device and USP II) requires different theoretical and numerical techniques. The outcome of an accurate model development is of fundamental importance for future design of pharmaceutical formulations with prescribed release properties. In addition the formulations are investigated through rheological, mechanical, thermoanalytic and mucoadhesive tests in order to have a more comprehensive picture of their practical utilization

    High-Resolution Structural Validation of the Computational Redesign of Human U1A Protein

    Get PDF
    SummaryAchieving atomic-level resolution in the computational design of a protein structure remains a challenging problem despite recent progress. Rigorous experimental tests are needed to improve protein design algorithms, yet studies of the structure and dynamics of computationally designed proteins are very few. The NMR structure and backbone dynamics of a redesigned protein of 96 amino acids are compared here with the design target, human U1A protein. We demonstrate that the redesigned protein reproduces the target structure to within the uncertainty of the NMR coordinates, even as 65 out of 96 amino acids were simultaneously changed by purely computational methods. The dynamics of the backbone of the redesigned protein also mirror those of human U1A, suggesting that the protein design algorithm captures the shape of the potential energy landscape in addition to the local energy minimum

    Experimental and modeling study of drug release from HPMC-based erodible oral thin films

    Get PDF
    In this work hydroxypropyl methylcellulose (HPMC) fast-dissolving thin films for oral administration are investigated. Furosemide (Class IV of the Biopharmaceutical Classification System) has been used as a model drug for in vitro release tests using three different set-ups: the Franz cell, the millifluidic flow-through device, and the paddle type dissolution apparatus (USP II). In order to enable drug incorporation within HPMC films, a multifunctional excipient, hydroxypropyl- Ī² -cyclodextrin (HP- Ī² -CD) has been included in the formulation, and the influence of HP- Ī² -CD on film swelling, erosion, and release properties has been investigated. Mathematical models capable of describing the swelling and release processes from HPMC erodible thin films in different apparatuses have been developed. In particular, we propose a new model for the description of drug transport and release in a Franz cell that accounts for the effect of the unavoidable imperfect mixing of the receptor chamber

    Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein

    Get PDF
    The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained Ī²-hairpin peptides that potently inhibits viral growth in HIV-infected cells. The nuclear magnetic resonance (NMR) structure of an inhibitory complex revealed that the peptide makes intimate contacts with the 3-nt bulge and the upper helix of the RNA hairpin, but that a single residue contacts the apical loop where recruitment of the essential cellular co-factor cyclin T1 occurs. Attempting to extend the peptide to form more interactions with the RNA loop, we examined a library of longer peptides and achieved >6-fold improvement in affinity. The structure of TAR bound to one of the extended peptides reveals that the peptide slides down the major groove of the RNA, relative to our design, in order to maintain critical interactions with TAR. These conserved contacts involve three amino acid side chains and identify critical interaction points required for potent and specific binding to TAR RNA. They constitute a template of essential interactions required for inhibition of this RN

    The Structure and Function of Small Nucleolar Ribonucleoproteins

    Get PDF
    Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequencespecific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these proteinā€“RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose- 20-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs

    How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape

    Get PDF
    The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We have used 13C NMR relaxation experiments to examine changes in the motional landscape of HIV-1 TAR in the presence of three ligands of different affinity and specificity. The ligands are argininamide, a linear peptide mimic of the Tat basic domain and a cyclic peptide that potently inhibits Tat-dependent activation of transcription. All three molecules induce the same motional characteristics within the three nucleotides bulge that represents the Tat-binding site. However, the cyclic peptide has a unique motional signature in the apical loop, which represents a binding site for the essential host co-factor cyclin T1. These results suggest that all peptidic mimics of Tat induce the same dynamics in TAR within this protein binding site. However, the new cyclic peptide mimic of Tat represents a new class of ligands with a unique effect on the dynamics and the structure of the apical loo

    Monitoring tat peptide binding to TAR RNA by solid-state (31)Pā€“(19)F REDOR NMR

    Get PDF
    Complexes of the HIV transactivation response element (TAR) RNA with the viral regulatory protein tat are of special interest due in particular to the plasticity of the RNA at this binding site and to the potential for therapeutic targeting of the interaction. We performed REDOR solid-state NMR experiments on lyophilized samples of a 29 nt HIV-1 TAR construct to measure conformational changes in the tat-binding site concomitant with binding of a short peptide comprising the residues of the tat basic binding domain. Peptide binding was observed to produce a nearly 4 ā„« decrease in the separation between phosphorothioate and 2ā€²F labels incorporated at A27 in the upper helix and U23 in the bulge, respectively, consistent with distance changes observed in previous solution NMR studies, and with models showing significant rearrangement in position of bulge residue U23 in the bound-form RNA. In addition to providing long-range constraints on free TAR and the TARā€“tat complex, these results suggest that in RNAs known to undergo large deformations upon ligand binding, (31)Pā€“(19)F REDOR measurements can also serve as an assay for complex formation in solid-state samples. To our knowledge, these experiments provide the first example of a solid-state NMR distance measurement in an RNAā€“peptide complex

    Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA Polymerase II CTD

    Get PDF
    The phosphorylation state of heptapeptide repeats within the C-terminal domain (CTD) of the largest subunit of RNA Polymerase II (PolII) controls the transcription cycle and is maintained by the competing action of kinases and phosphatases. Rtr1 was recently proposed to be the enzyme responsible for the transition of PolII into the elongation and termination phases of transcription by removing the phosphate marker on Serine 5, but this attribution was questioned by the apparent lack of enzymatic activity. Here we demonstrate that Rtr1 is a phosphatase of new structure that is auto-inhibited by its own C-terminus. The enzymatic activity of the protein in vitro is functionally important in vivo as well: a single amino acid mutation that reduces activity leads to the same phenotype in vivo as deletion of the protein-coding gene from yeast. Surprisingly, Rtr1 dephosphorylates not only Serine 5 on the CTD, but also the newly described anti-termination Tyrosine 1 marker, supporting the hypothesis that Rtr1 and its homologs promote the transition from transcription to termination

    Strong Correlation between SHAPE Chemistry and the Generalized NMR Order Parameter ( S 2 ) in RNA

    Get PDF
    The functions of most RNA molecules are critically dependent on the distinct local dynamics that characterize secondary structure and tertiary interactions and on structural changes that occur upon binding by proteins and small molecule ligands. Measurements of RNA dynamics at nucleotide resolution set the foundation for understanding the roles of individual residues in folding, catalysis, and ligand recognition. In favorable cases, local order in small RNAs can be quantitatively analyzed by NMR in terms of a generalized order parameter, S2. Alternatively, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry measures local nucleotide flexibility in RNAs of any size using structure-sensitive reagents that acylate the 2'-hydroxyl position. In this work, we compare per-residue RNA dynamics, analyzed by both S2 and SHAPE, for three RNAs: the HIV-1 TAR element, the U1A protein binding site, and the Tetrahymena telomerase stem loop 4. We find a very strong correlation between the two measurements: nucleotides with high SHAPE reactivities consistently have low S2 values. We conclude that SHAPE chemistry quantitatively reports local nucleotide dynamics and can be used with confidence to analyze dynamics in large RNAs, RNA-protein complexes, and RNAs in vivo

    The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae

    Get PDF
    The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Ī” strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation
    • ā€¦
    corecore