58 research outputs found

    Proteolysis of microtubule associated protein 2 and sensitivity of pancreatic tumours to docetaxel

    Get PDF
    We have studied the state of microtubule associated protein 2 (MAP2) in the pancreatic ductal adenocarcinomas P03 and P02 (sensitive and refractory to docetaxel respectively) since they express the corresponding mRNA and MAP2-related peptides. Immunohistochemical localization showed that in tumour P03 the MAP2-related peptides are highly expressed and confined to the epithelial malignant cells while in P02 the intensity of the immunostaining is lower. However, anti α-tubulin staining followed a similar pattern suggesting that the net amount of macromolecular structures in the sensitive tumour is higher than in the refractory one. This may explain its higher sensitivity to docetaxel, because tubulin assembled into microtubules is the target of the drug. We found that protein extracts from both tumours differed in their proteolytic activity on rat brain MAP2. Since the proteolysis pattern obtained was similar to the one produced by Cathepsin D, we studied the effect of MAP2 proteolysed by this enzyme on microtubule formation in vitro. Proteolysis was found to increase the tendency of tubulin to assemble into macromolecular structures (microtubules and aggregates) in the presence of docetaxel. This suggests that in vivo proteolysis of MAP2 might increase microtubule alterations and potentiate the antitumour effect of docetaxel. © 2000 Cancer Research Campaig

    Тенденції розвитку національної інноваційної системи в Україні

    Get PDF
    Проаналізовано національну інноваційну систему України. Розглянуто галузі промисловості України за ознаками інноваційної активності та досліджено темпи зростання показників, враховуючи індекс інфляції. Встановлено, що спад темпів зростання динаміки реалізованої продукції призводить до зменшення витрат на інноваційну діяльність.Дан анализ национальной инновационной системы Украины. Рассмотрены отрасли промышленности Украины по признакам инновационной активности и исследованы темпы роста показателей, учитывая индекс инфляции. Установлено, что спад темпов роста динамики реализованной продукции приводит к уменьшению затрат на инновационную деятельность.This article analyses national innovation system of Ukraine. Examined the industry of Ukraine based on innovative activity and investigated the growth indicators, taking into account inflation-index. It is established that the slowdown in the dynamics realized production leads to a decrease in the cost of innovation

    Chemotherapeutic errors in hospitalised cancer patients: attributable damage and extra costs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of increasing efforts to enhance patient safety, medication errors in hospitalised patients are still relatively common, but with potentially severe consequences. This study aimed to assess antineoplastic medication errors in both affected patients and intercepted cases in terms of frequency, severity for patients, and costs.</p> <p>Methods</p> <p>A 1-year prospective study was conducted in order to identify the medication errors that occurred during chemotherapy treatment of cancer patients at a French university hospital. The severity and potential consequences of intercepted errors were independently assessed by two physicians. A cost analysis was performed using a simulation of potential hospital stays, with estimations based on the costs of diagnosis-related groups.</p> <p>Results</p> <p>Among the 6, 607 antineoplastic prescriptions, 341 (5.2%) contained at least one error, corresponding to a total of 449 medication errors. However, most errors (n = 436) were intercepted before medication was administered to the patients. Prescription errors represented 91% of errors, followed by pharmaceutical (8%) and administration errors (1%). According to an independent estimation, 13.4% of avoided errors would have resulted in temporary injury and 2.6% in permanent damage, while 2.6% would have compromised the vital prognosis of the patient, with four to eight deaths thus being avoided. Overall, 13 medication errors reached the patient without causing damage, although two patients required enhanced monitoring. If the intercepted errors had not been discovered, they would have resulted in 216 additional days of hospitalisation and cost an estimated annual total of 92, 907€, comprising 69, 248€ (74%) in hospital stays and 23, 658€ (26%) in additional drugs.</p> <p>Conclusion</p> <p>Our findings point to the very small number of chemotherapy errors that actually reach patients, although problems in the chemotherapy ordering process are frequent, with the potential for being dangerous and costly.</p

    Microtubule sliding activity of a kinesin-8 promotes spindle assembly and spindle length control

    Get PDF
    Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly

    Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    Get PDF
    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future

    Actin polymerization processes in plant cells

    No full text
    International audienc

    Plant katanin, a microtubule severing protein

    No full text
    DOI: 10.1016/S1065-6995(02)00324-4International audienc

    Isolated Plant Nuclei Nucleate Microtubule Assembly: The Nuclear Surface in Higher Plants Has Centrosome-like Activity.

    No full text
    In most eukaryotic cells, microtubules (MTs) are assembled at identified nucleating sites, such as centrosomes or spindle pole bodies. Higher plant cells do not possess such centrosome-like structures. Thus, the fundamental issues of where and how the intracellular plant MTs are nucleated remain highly debatable. A large body of evidence indicates that plant MTs emerge from the nuclear periphery. In this study, we developed an in vitro assay in which isolated maize nuclei nucleate MT assembly at a tubulin concentration (14 [mu]M of neurotubulin) that is not efficient for spontaneous MT assembly. No MT-stabilizing agents, such as taxol or dimethyl sulfoxide, were used. Our model provides evidence that the nuclear surface functions as a MT-nucleating site in higher plant cells. A monoclonal antibody raised against a pericentriolar antigen immunostained the surface of isolated nuclei, and a 100-kD polypeptide in 4 M urea-treated nuclear extracts was detected

    Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules

    No full text
    International audienc
    corecore