179 research outputs found

    Modeling the conformality of atomic layer deposition: the effect of sticking probability

    Get PDF
    The key advantage of atomic layer deposition (ALD) is undoubtedly the excellent step coverage, which allows for conformal deposition of thin films in high-aspect-ratio structures. In this paper, a model is proposed to predict the deposited film thickness as a function of depth inside a hole. The main model parameters are the gas pressure, the deposition temperature, and the initial sticking probability of the precursor molecules. Earlier work by Gordon et al. assumed a sticking probability of 0/100% for molecules hitting a covered/uncovered section of the wall of the hole, thus resulting in a stepwise film-thickness profile. In this work, the sticking probability is related to the surface coverage theta by Langmuir’s equation s(theta) = s0(1−theta), whereby the initial sticking probability s0 is now an adjustable model parameter. For s0~=100%, the model predicts a steplike profile, in agreement with Gordon et al., while for smaller values of s0, a gradual decreasing coverage profile is predicted. Furthermore, experiments were performed to quantify the conformality for the trimethylaluminum (TMA)/H2O ALD process using macroscopic test structures. It is shown that the experimental data and the simulation results follow the same trends

    The texture of thin NiSi films and its effect on agglomeration

    Get PDF
    Nickel silicide films are used as contacting materials in the micro electronics industry. It was recently [1] discovered that these films exhibit a peculiar type of texture, which was called 'axiotaxy', whereby certain lattice planes in the NiSi grains are preferentially aligned to (110)-type lattice planes in the single crystal Si substrate. In this contribution, we present a quantitative study of this phenomenon, using both XRD pole figure measurements and EBSD. Furthermore, we report a correlation between the texture of these NiSi films and their morphological stability during annealing at high temperature. In spite of the small grain size in these films, EBSD could be used to determine the volume fractions of the various texture components. This provided quantitative support for the claim that axiotaxy is the main texture component in these films, as about 40% of the grains belong to one of the axiotaxial texture components, and the remaining fraction exhibits a random orientation. A discussion of the techniques used during the measurement and analysis of the EBSD data is presented, as this must be given special consideration in view of the peculiar type of texture encountered in these films. Secondly, both XRD and EBSD were performed after annealing the NiSi films at various temperatures and durations. It is known that thin NiSi films have a strong tendency to agglomerate [2]. Our data indicates a correlation between the texture evolution and the agglomeration of the NiSi layer. Grains with axiotaxial orientation were observed to grow and thicken during the annealing process, by consuming neighboring randomly oriented grains. This suggests that the texture of the NiSi layer is a determining factor for the morphological stability of the film. The fact that grains with axiotaxial orientation grow during heat treatment can be related to the one dimensional periodicity at the interface, which lowers the interface energy and thus provides a driving force for the preferred growth of these grains. The agglomeration of NiSi films results in a significant increase of the sheet resistance. Therefore, these results illustrate the importance of texture control for the application of these films as contacts in micro-electronic devices

    Phase formation and thermal stability of ultrathin nickel-silicides on Si(100)

    Get PDF
    The solid-state reaction and agglomeration of thin nickel-silicide films was investigated from sputter deposited nickel films (1-10 nm) on silicon-on-insulator (100) substrates. For typical anneals at a ramp rate of 3 degrees C/s, 5-10 nm Ni films react with silicon and form NiSi, which agglomerates at 550-650 degrees C, whereas films with a thickness of 3.7 nm of less were found to form an epitaxylike nickel-silicide layer. The resulting films show an increased thermal stability with a low electrical resistivity up to 800 degrees C

    Fundamental properties and nanoscale aspects of Schottky barriers

    No full text

    Experimentele studie van GaAs/metaal en GaAs/Elektrolyt Schottky-barrières onder belichting

    No full text
    • …
    corecore