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José Luis Gómez Vázquez,

Dingyuan Iris Sun, ..., Orr Shomroni,

Kris Vleminckx, Peter Walentek

Correspondence
peter.walentek@medizin.uni-freiburg.de

In Brief

Impaired (re-)generation of lung epithelia

is associated with Wnt signaling changes

in animals and human lung disease

patients. Haas et al. demonstrate that

DN-TP63 is a Wnt-regulated master

transcription factor inhibiting (re-)

generation of new epithelial cells from

stem cells. These findings are equally

important for understanding animal

development and disease mechanisms.

mailto:peter.walentek@medizin.uni-freiburg.de
https://doi.org/10.1016/j.celrep.2019.08.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.08.063&domain=pdf


Cell Reports

Article
DN-Tp63 Mediates Wnt/b-Catenin-Induced
Inhibition of Differentiation in
Basal Stem Cells of Mucociliary Epithelia
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SUMMARY

Mucociliary epithelia provide a first line of defense
against pathogens. Impaired regeneration and re-
modeling of mucociliary epithelia are associated
with dysregulatedWnt/b-catenin signaling in chronic
airway diseases, but underlying mechanisms remain
elusive, and studies yield seemingly contradicting re-
sults. Employing the Xenopusmucociliary epidermis,
the mouse airway, and human airway Basal cells, we
characterize the evolutionarily conserved roles of
Wnt/b-catenin signaling in vertebrates. In multicili-
ated cells, Wnt is required for cilia formation during
differentiation. In Basal cells,Wnt prevents specifica-
tion of epithelial cell types by activating DN-TP63, a
master transcription factor, which is necessary and
sufficient to mediate the Wnt-induced inhibition of
specification and is required to retain Basal cells dur-
ing development. Chronic Wnt activation leads to re-
modeling and Basal cell hyperplasia, which are
reversible in vivo and in vitro, suggesting Wnt inhibi-
tion as a treatment option in chronic lung diseases.
Our work provides important insights into mucocili-
ary signaling, development, and disease.

INTRODUCTION

Mucociliary epithelia line the airways of most vertebrates as

well as the epidermis of many vertebrate larvae and inverte-

brates (Walentek and Quigley, 2017). They are composed of

multiple secretory cell types, including Goblet and outer cells,

which releasemucus, along with Ionocytes, Club cells, and small

secretory cells (SSCs), which release ions and small molecules
3338 Cell Reports 28, 3338–3352, September 24, 2019 ª 2019 The A
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into the extracellular space; in addition, multiciliated cells

(MCCs) transport fluid along epithelia by ciliary motion, and

Basal cells (BCs) reside underneath the epithelia and serve as

tissue-specific stem cells (Hogan et al., 2014; Hong et al.,

2004; Rock et al., 2010). Mucociliary epithelia provide a first

line of defense against pathogens by mucociliary clearance,

which relies on the correct numbers and function of MCCs and

secretory cells (Mall, 2008). Aberrations of cell type composition

and BC behavior are observed in chronic lung diseases, e.g.,

chronic obstructive pulmonary disease (COPD), leading to

impaired clearance and airway infections (Hogan et al., 2014;

Tilley et al., 2015). While chronic lung diseases are among the

most common causes of death worldwide, their pathogenic

mechanisms are poorly understood and treatment options are

limited.

A small number of signaling pathways are employed reitera-

tively to induce context-dependent responses. This complicates

the interpretation of results from experimental manipulations of

cell signaling. Wnt/b-catenin signaling regulates gene expres-

sion and plays a role in virtually all cells (Clevers, 2006). Signaling

is activated by extracellular binding of Wnt ligands to Frizzled re-

ceptors and LRP5/6 co-receptors, which then recruit the kinase

GSK3b to the membrane, where it is inhibited (Niehrs, 2012).

b-catenin is then stabilized and enters the nucleus, where it

acts as transcriptional co-regulator through binding to TCF/

LEF transcription factors.

Wnt/b-catenin signaling functions in mucociliary epithelia, but

results from manipulations often appear contradictory as to the

exact roles signaling plays. Wnt/b-catenin was suggested to

promote MCC specification and expression of FOXJ1, a key

transcription factor in motile cilia formation (Brechbuhl et al.,

2011; Hou et al., 2019; Huang and Niehrs, 2014; Malleske

et al., 2018; Stubbs et al., 2008; Walentek et al., 2012, 2015).

In contrast, Wnt/b-catenin activation can also lead to loss of

MCCs or Goblet cell hyperplasia (Hashimoto et al., 2012;
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Wnt/b-Catenin Signaling Is Active in MCCs and Basal Progenitors

(A) Analysis of Wnt/b-catenin activity in the X. laevismucociliary epidermis using the pbin7LEF:dGFP reporter line (green). Nuclei are stained by DAPI (blue). Red

arrowheads indicate GFP-positive cells in the outer epithelial layer. Dashed lines outline the epidermal layers. Embryonic stages (st. 8–33) are indicated.

(B) Analysis of Wnt/b-catenin activity in the mouse developing airwaymucociliary epithelium using the TCF/LEF:H2B-GFP reporter line (green). Nuclei are stained

by DAPI (blue) and MCCs are marked by acetylated-a-tubulin (Ac.-a-tubulin, magenta) staining. Dashed lines outline the epithelium. Embryonic (E14.5–18.5) and

post-natal (P1–7) stages are indicated.

(legend continued on next page)
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Mucenski et al., 2005; Reynolds et al., 2008; Schmid et al., 2017).

Additional effects for Wnt were proposed in submucosal glands,

during regeneration and in regulating proliferation (Driskell et al.,

2004; Hogan et al., 2014; Lynch et al., 2018; Pongracz and

Stockley, 2006). Dysregulation of Wnt signaling is commonly

observed in chronic lung diseases such as COPD and idiopathic

pulmonary fibrosis (IPF) (Baarsma and Königshoff, 2017; Pon-

gracz and Stockley, 2006). Thus, fundamental knowledge on

the precise roles of Wnt/b-catenin in mucociliary cells is crucial

to understand disease mechanisms and to provide entry points

to develop therapies.

We investigated the roles of Wnt/b-catenin in vertebrate mu-

cociliary epithelia using the Xenopus epidermis, the mouse

airway, and human airway Basal cell culture. Employing a

combination of signaling reporters with single-cell resolution,

manipulations of the Wnt pathway during various phases of

development and regeneration, and epistasis experiments, we

characterize the roles of Wnt signaling on mucociliary cell types.

Our data confirm a role of Wnt/b-catenin signaling in MCC differ-

entiation but also show its importance in the regulation of BCs.

Collectively, we propose that high levels of Wnt/b-catenin

signaling block differentiation of BCs into epithelial cell types

by activating DN-TP63 expression, which is necessary and suf-

ficient to mediate this effect and to retain stem cells. Importantly,

this inhibition of differentiation is reversible in vivo and in vitro,

suggesting local Wnt/b-catenin signaling manipulations to be

further explored in the context of chronic lung diseases associ-

ated with airway epithelial remodeling.

RESULTS

Wnt/b-Catenin Functions in MCCs and BCs
Wnt signaling was implicated in the specification and differenti-

ation of secretory cells and MCCs in the mammalian airway as

well as the Xenopus mucociliary epidermis (Huang and Niehrs,

2014; Mucenski et al., 2005; Walentek et al., 2015). To clarify

the roles of Wnt/b-catenin signaling in mucociliary cell types,

we analyzed signaling activity using transgenic reporter lines

expressing GFP upon Wnt/b-catenin activation in Xenopus and

the mouse (Borday et al., 2018; Ferrer-Vaquer et al., 2010).

Wnt activity was assessed throughout development of the

Xenopus epidermis and in the mouse conducting airways (Fig-

ure 1; Figure S1). While the epidermis and the airways are

derived from different germ layers and formed at different stages

relative to organismal development (Walentek and Quigley,

2017; Warburton et al., 2010), our analysis revealed striking sim-

ilarities in Wnt activity in both tissues. Initially, signaling was

observed in cells throughout the epithelia, without particular
(C) MTEC ALI cultures generated from the TCF/LEF:H2B-GFP reporter line (green)

different stages. n = 3 cultures per time point. MTECs were stained for Ac.-a-tubu

(D1 and 4), and MCCs could be detected from day 7 (D7) onward.

(D) En-face imaging of the mature Xenopus epidermis at st. 33 shows elevated

membranes are visualized by actin staining (magenta).

(E) Immunostaining for Ac.-a-tubulin (magenta) and nuclei (DAPI, blue) shows hig

signaling levels in differentiating MCCs.

(F) Single confocal sections ofMTECs at ALI day 7 (D7) showMCCs (Ac.-a-tubulin,

without Wnt activity, and non-MCC/non-Club cells with elevated Wnt signaling le

Related to Figure S1.

3340 Cell Reports 28, 3338–3352, September 24, 2019
compartmentalization. With progressive development, Wnt ac-

tivity was restricted to the sensorial layer of the Xenopus

epidermis (Figure 1A) and the basal compartment of the airway

epithelium (Figure 1B). In both systems, the location of Wnt-pos-

itive cells coincided with the known location of the respective

progenitor cell population that gives rise to MCCs and secretory

cells, which then intercalate into the epithelium during differenti-

ation (Deblandre et al., 1999; Rock et al., 2009; Stubbs et al.,

2006). In Xenopus, we also observed GFP-positive cells in the

epithelial cell layer during intercalation stages (stage [st.] 25) (Fig-

ure 1A, arrowheads). En-face imaging after immunostaining for

cell type markers revealed increased Wnt activity in intercalating

MCCs and Ionocytes at st. 25 (Figure S1C). In the mature muco-

ciliary epidermis, Wnt activity was then restricted to MCCs (Fig-

ure 1D). We also detected elevated Wnt activity in differentiating

MCCs of the mouse airway, although reporter activity was lower

in MCCs as compared to cells residing at the base of the epithe-

lium (Figure 1E; Figure S1D). We generated mouse tracheal

epithelial cell (MTEC) cultures from Wnt reporter animals and

monitored Wnt activity in the air-liquid interface (ALI) in vitro

model at days 1, 4, 7, 14, and 21 (Vladar and Brody, 2013).

Wnt activity was detected throughout all stages of regeneration,

with MCCs showing elevated signaling levels as well as reporter-

positive cells residing basally, but no Wnt activity was detected

in Club cells (Figures 1C and 1F; Figure S1E).

These data suggested a role for Wnt/b-catenin in basal pro-

genitor cells as well as in MCCs. To test this, we knocked

down b-catenin using morpholino-oligonucleotide (MO) injec-

tions targeting the Xenopus epidermis and analyzed epidermal

morphology as well as MCCs (Figure 2A). We observed

increased numbers of MCCs in b-catenin morphants (b-catenin

MO), but these MCCs presented reduced cilia numbers (Figures

2A and 2B). These data resembled experiments using overex-

pression of dickkopf 1 (dkk1) in Xenopus (Walentek et al.,

2015). Reduced ciliation rate in b-catenin-deficient MCCs

was also compatible with data demonstrating that b-catenin

is a transcriptional co-regulator of foxj1, which is required for

motile ciliogenesis in MCCs (Caron et al., 2012; Gomperts

et al., 2004; Stubbs et al., 2008; Walentek et al., 2012). Neverthe-

less, the question arose as to why reduced b-catenin levels

increased the overall number of MCCs in the epithelium. As the

basal precursor cell compartment was the site of highest Wnt

signaling reporter activity in both Xenopus and mice, we

wondered if loss of b-catenin would affect BCs and lead to

increased MCC specification. We injected b-catenin MO target-

ing exclusively the right side of embryos and analyzed marker

gene expression for MCCs and BCs at mid-neurula stages (st.

17), i.e., after cell fate specification. In situ hybridization (ISH)
and cultured up to 21 days (D21) revealedWnt signaling activity throughout the

lin (blue) and CC10 (magenta). Only primary cilia were present at days 1 and 4

signaling levels (green) in MCCs (Ac.-a-tubulin, blue). SSCs (5HT, blue). Cell

h levels of Wnt signaling (green) in cells with BC morphology and intermediate

blue) with variably elevated signaling levels (green), Club cells (CC10,magenta)

vels at the base.



Figure 2. Wnt/b-Catenin Regulates MCC Numbers and DN-tp63 Expression

(A) Morpholino-oligonucleotide (MO) knockdown of b-catenin in Xenopus increases MCC numbers (Ac.-a-tubulin, green), but MCCs present fewer and shorter

cilia than controls (ctrl.). Actin staining (magenta). Insets indicate locations of magnified areas I–IV.

(B) Quantification of results depicted in (A). Mann Whitney test, *** p % 0.001.

(C) ISH reveals increased MCC numbers (foxj+ cells) after unilateral knockdown of b-catenin (b-catenin MO). Controls (n = 13); b-catenin MO (n = 22).

(D) ISH reveals decreased DN-tp63 expression after b-catenin MO. Controls (n = 27); b-catenin MO (n = 37).

In (B) and (C), the injected side is indicated by red arrowheads. Dorsal views are shown in upper panels, lateral views are shown in the lower panels, andmagnified

views are depicted in white boxes.
for foxj1 (MCCs) and DN-tp63 (sensorial layer BCs; Cibois et al.,

2015; Lu et al., 2001) revealed an increase in foxj1-positive cells

and reduced DN-tp63 expression on the injected side of the em-

bryos (Figures 2C and 2D). This implicated an increase in MCC

specification at the expense of basal progenitors upon Wnt inhi-

bition. Collectively, our experiments identifiedMCCs and BCs as

sites of elevated signaling activity during mucociliary develop-

ment and a requirement for controlled Wnt/b-catenin signaling

in MCCs and BCs to generate a normal mucociliary epithelium.

DN-Tp63 Is Necessary and Sufficient to Block
Differentiation in Response to Wnt/b-Catenin
Airway BCs are tissue-specific stem cells and required for main-

tenance and regeneration of all mucociliary cell types (Rock

et al., 2010; Zuo et al., 2015). DN-TP63-a/b are the dominantly

expressed isoforms of the transcription factor TP63 in airway

BCs and a commonly used marker for BCs in various epithelia
(Arason et al., 2014; Soares and Zhou, 2018; Warner et al.,

2013). Expression ofDN-TP63 isoforms is regulated by an evolu-

tionarily conserved alternative promotor (P2) initiating transcrip-

tion at alternative exon 3 (Ruptier et al., 2011). In Xenopus, only

DN-tp63 isoforms are expressed during development, and no

full-length isoform is annotated in the X. laevis or X. tropicalis

genomes to date, indicating potential loss of this isoform in the

frog. Nevertheless, in Xenopus and in mammals, chromatin

immunoprecipitation and DNA sequencing (chromatin immuno-

precipitation sequencing [ChIP-seq]) has detected multiple

TCF/LEF binding sites in P2, suggesting direct Wnt/b-catenin

regulation (Kjolby and Harland, 2017; Ruptier et al., 2011). Since

DN-TP63 is associated with the regulation of differentiation

and given our observation that loss of b-catenin lead to

decreased DN-tp63 expression, we tested if DN-tp63 was Wnt

regulated in the mucociliary epidermis. Ectopic activation of

Wnt/b-catenin signaling was achieved by application of the
Cell Reports 28, 3338–3352, September 24, 2019 3341



Figure 3. DN-tp63 Mediates Wnt/b-Cate-

nin-Induced Inhibition of Cell Fate Specifi-

cation in Xenopus

(A–D) BIO treatments from st. 8–17 or st. 8–30.

DMSO was used as vehicle control.

(A) Confocal imaging shows Wnt/b-catenin

signaling activation (green) and thickening of the

epidermis in BIO-treated embryos. Nuclei (DAPI,

blue). DMSO (n = 2); BIO (n = 2).

(B) In situ hybridization (ISH) shows increased in-

tensity and thickness of the DN-tp63 expression

domain in BIO-treated whole mounts (upper row)

and transversal sections (bottom row).

(C) BIO treatment reduces MCC (Ac.-a-tubulin,

green), Ionocyte (no staining, black), and SSC

(large vesicles, peanut agglutinin [PNA] staining,

magenta) numbers in confocal micrographs. Actin

staining (green). DN-tp63 MO in controls leads to

increased MCCs and Ionocytes, while DN-tp63

MO in BIO-treated embryos rescues MCC and

Ionocyte formation.

(D) ISH reveals reducedMCC numbers (foxj+ cells)

after BIO treatment, while unilateral knockdown of

DN-tp63 in control treated embryos leads to more

foxj+ cells and rescues foxj+ cell numbers in BIO-

treated embryos. DMSO (n = 5); BIO (n = 7);

DMSO+DN-tp63 MO (n = 5); BIO+DN-tp63 MO

(n = 4). Injected side is indicated by red arrowhead.

Dashed lines indicate epidermal area in BIO-

treated embryos.

(E) Overexpression of gfp-DN-tp63mRNA leads to

nuclear localization of the protein (green) and

reduced MCC (Ac.-a-tubulin, blue) numbers at st.

30. Actin staining (magenta). Differentiated MCCs

in injected specimens show no nuclear GFP signal

(asterisks), indicating that they were not targeted.

Magnified areas I–II are indicated.

(F) ISH for foxj1 at st. 17 shows reduced MCCs in

DN-tp63 mRNA injected embryos.

Related to Figures S2 and S3.
GSK3b-inhibitor 6-Bromoindirubin-30-oxime (BIO) to the me-

dium starting at st. 8 of Xenopus development. Efficient

activation of the Wnt pathway in the epidermis was confirmed

using the Wnt reporter line (Figure 3A). First, we analyzed the

effects of BIO treatment on epidermal DN-tp63 expression by

ISH. Specimens treated with BIO displayed increased levels of

DN-tp63 expression and a thickening of the sensorial layer

(Figure 3B; Figure S2A). Next, we treated embryos with BIO

from st. 8 until st. 30, when MCCs and Ionocytes have fully

developed, and analyzed cell type composition by immunofluo-

rescent staining (Walentek, 2018). Treatment with BIO signifi-

cantly reduced the numbers of all intercalating cell types in a

dose-dependent manner (Figure 3C; Figures S2B and S2C).

Lack of mature MCCs and Ionocytes could be a result of

inhibited cell fate specification or defective differentiation and

intercalation into the epithelium. Therefore, we also tested the
3342 Cell Reports 28, 3338–3352, September 24, 2019
effects of BIO treatment on the expres-

sion of early cell-type-markers associ-

ated with successful cell fate specifica-

tion by ISH at st. 17, i.e., before
intercalation (Walentek and Quigley, 2017). We observed a loss

or strong reduction in cell-type-marker expression for MCCs

(foxj1), Ionocytes (foxi1; Quigley et al., 2011), and SSCs (foxa1;

Dubaissi et al., 2014), indicating a failure in cell fate specification

after BIO application (Figure 3D; Figures S2D and S2E). These

data suggested that increased Wnt/b-catenin lead to upregula-

tion of DN-tp63 and expansion of the BC pool, while inhibiting

specification of epidermal cell types. To directly test if DN-tp63

was necessary for the block of specification in response to

Wnt overactivation, we injected embryos with a DN-tp63 MO

at four-cell stage and treated the morphants either with vehicle

or BIO, starting at st. 8. Cell type quantification at st. 30 and

ISH marker analysis at st. 17 both showed a partial rescue of

cell fate specification and morphogenesis in DN-tp63 MO

embryos treated with BIO and an increased specification of

MCCs and Ionocytes in DN-tp63 MO morphants without BIO



(legend on next page)
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application (Figures 3C and 3D; Figures S2B–S2E). Together,

these results indicated that DN-tp63 activation was necessary

to block differentiation upon BIO treatment. Next, we wondered

if DN-tp63 alone was sufficient to inhibit differentiation in the

absence of increased Wnt signaling. Therefore, we generated

GFP-tagged and untaggedDN-tp63 constructs. Overexpression

of gfp-DN-tp63 in the epidermis and immunofluorescent staining

confirmed successful production of the protein and its nuclear

localization (Figure 3E). Furthermore, injections of gfp-DN-tp63

or DN-tp63 reduced MCC numbers and expression of early

cell type markers for MCCs, Ionocytes, and SSCs (Figures 3E

and 3F; Figures S3A–S3C), thereby providing evidence for suffi-

ciency. Additionally, we investigated if DN-tp63 only inhibits cell

fate specification fromBCs or if its activity in cells after specifica-

tion could inhibit differentiation as well. For that, we generated a

hormone-inducible version of GFP-DN-tp63 (GFP-DN-tp63-GR;

Kolm and Sive, 1995), injected embryos at four-cell stage, and

added dexamethasone (Dex) to the medium at various stages

of development. Activation of the construct and subsequent

nuclear localization was confirmed by confocal microscopy

(Figure S3D). Dex addition at st. 9 suppressed MCC formation

as observed with the non-inducible construct, whereas applica-

tion of vehicle at st. 9 or Dex activation after MCC specification at

st. 24 did not result in reduced MCC numbers at st. 30 (Figures

S3E and S3F). High-magnification imaging further confirmed

presence of GFP-DN-tp63-GR in the nuclei of fully differentiated

MCCs and Ionocytes in specimens activated at st. 24 (Fig-

ure S3G). These results indicated that the inhibitory effect of

DN-tp63 on epithelial cell specification was restricted to basal

progenitors. Finally, we investigated the degree of evolutionary

conservation of the observed effects in human airway basal

stem cells. Ectopic activation of canonical Wnt signaling in ALI

cultures derived from immortalized human airway BCs (BCi-

NS1.1 cells [BCIs]; Walters et al., 2013) was induced by applica-

tion of human recombinant R-spondin 2 (RSPO2) protein to the

medium after initial epithelialization of cultures was completed

at ALI day 7. We then analyzed the effects of RSPO2 on airway

mucociliary regeneration by immunofluorescent staining and

quantitative real-time PCR. In BCIs, RSPO2 application inhibited

differentiation of MCCs and Club secretory cells (Figures 4A, 4C,

and 4D). At the same time, we observed an increase in DN-TP63

expression after RSPO2 treatment as well as elevated levels for

KRT5 (Keratin 5), an additional marker for BCs in airway epithelia

(Figures 4C–4E) (Zuo et al., 2015). Orthogonal optical sections of

confocal images from BCIs stained for DN-TP63 or KRT5 further

revealed an increase in epithelial thickness and epithelial KRT5-
Figure 4. Wnt/b-Catenin Signaling Inhibits Differentiation and Promote
(A–F) Human immortalized BC (BCIs) kept in air-liquid interface (ALI) culture for u

Wnt/b-catenin signaling starting at ALI day 7 (D7). n = 3 cultures per time point a

(A) Confocal imaging of specimens stained for Ac.-a-tubulin (MCCs, blue), CC10

and Club cell numbers in RSPO2-treated cultures.

(B) RSPO2 does not reduce the number of DN-TP63+ (green) cells. Nuclei (DAPI

(C) Quantification from (A) and (B). Mann Whitney test, not significant, ns (p > 0.0

(D) Quantitative real-time PCR. Expression levels are depicted relative to stage c

(SCGB1A1) markers but increases expression of BCmarkers (DN-TP63,KRT5). S

(E and F) Optical orthogonal sections of confocal images. RSPO2-treated cultu

DN-TP63 (green, in E) and KRT5 (green, in F).

Related to Figure S4.
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positive cells after RSPO2 treatment (Figures 4E and 4F; Figures

S4A and S4B), similar to our observations in Xenopus and remi-

niscent of phenotypes in COPD patients (Rock et al., 2010),

potentially indicating early BC hyperplasia. This interpretation

of results was further supported by quantification of Ki67-posi-

tive proliferative cells, which increased in number upon RSPO2

treatment, while the total number of epithelial cells remained

low, likely due to inhibited specification and intercalation of

MCCs and Club cells into the epithelium (Figures S4C–S4E).

To address if Goblet cell hyperplasia occurred after Wnt/b-cate-

nin gain of function in addition to effects on MCC and Club cell

specification, we also analyzed mucin expression. Quantitative

real-time PCR on BCIs treated with RSPO2 revealed reduced

MUC5A/C expression, while the expression of MUC5B was

elevated (Figures S4F and S4G). Nevertheless, immunofluores-

cent staining did not detect an increase in epithelial cells staining

for MUC5B (Figure S4H). In summary, our data revealed that

DN-TP63 was necessary and sufficient to inhibit differentiation

of mucociliary epithelial cell types from BCs in response to

canonical Wnt activation, without the need for Goblet cell hyper-

plasia. Furthermore, our results suggested that prolonged over-

activation of Wnt signaling could lead to BC hyperplasia and

long-term remodeling of the airway epithelium.

DN-Tp63 and Wnt Signaling Are Required for
Maintenance of BCs and Correct Cell Type Composition
in Mucociliary Epithelia
While our results argued for an important role forDN-TP63 in BCs

of mucociliary epithelia, we found it astonishing that develop-

mental loss of DN-TP63 in mammals (Daniely et al., 2004) and

Xenopus (this study) still allowed for the formation of a mucocili-

ary epithelium. We therefore tested how DN-tp63 knockdown

affected the mucociliary epidermis in more detail. In contrast to

MCCs and Ionocytes, which intercalate early (st. 25) and are fully

mature by st. 30, SSCs appear and mature slightly later (Walen-

tek et al., 2014), resulting in approximately equal numbers of

MCCs, Ionocytes, and SSCs in the mucociliary epidermis by

st. 34 (Figure 5C) (Walentek, 2018). Injections of DN-tp63 MO

and subsequent analysis of cell type composition at st. 34

revealed a moderate increase in MCCs and Ionocytes but a

significant decrease in SSCs (Figures 5A, 5C, and 5D). These

results suggested that premature release of BCs into differentia-

tion could have reduced the availability of BCs during later

stages of SSC specification. Therefore, we tested if SSCs are

indeed specified after MCCs and Ionocytes or if their late

appearance in the epithelium could be a consequence of
s Stemness in Human BCs
p to 4 weeks. Human recombinant R-spondin2 (RSPO2) was used to activate

nd treatment.

(Club cells, green), and Actin (cell membranes, magenta) show reduced MCC

, blue).

5); *p % 0.05; **p % 0.01; ***p % 0.001.

ontrols. RSPO2 reduces expression of MCC (FOXJ1, MCIDAS) and Club cell

tudent’s t test, not significant, ns (p > 0.05); *p% 0.05; **p% 0.01; ***p% 0.001.

res display increased epithelial thickness and cells staining for BC markers
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prolonged differentiation or slower intercalation. For that, em-

bryos were treated with BIO, starting at st. 11. This later stimula-

tion of Wnt/b-catenin signaling resulted in almost normal MCC

and Ionocyte numbers but completely inhibited the appearance

of SSCs (Figures 5B–5D). These data strongly indicated that

SSCs were derived from the same BC progenitor pool during

development as MCCs and Ionocytes and that SSCs were

specified later. To test if Xenopus BCs were lost by DN-tp63

MO, we generated mucociliary organoids from Xenopus animal

cap explants, providing pure mucociliary tissue for RNA

sequencing (RNA-seq) (Walentek and Quigley, 2017). Organoids

were generated from control and DN-tp63 morphant embryos

and collected for total RNA extraction at early (st. 10) and late

(st. 17) cell-fate-specification stages as well as after specifica-

tion was completed (st. 25). RNA-seq and differential expression

analysis revealed significant differences in gene expression

between control and DN-tp63 morphant samples, and the

most differentially expressed genes were detected at st. 25

(243 genes with P-adj < 0.05; Figure S5A; Table S1) (Love

et al., 2014). Among significantly upregulated genes, we found

MCC and Ionocyte genes, including mcidas, ccno, cdc20b,

foxn4, and foxi1, and Gene Ontology (GO)-term analysis indi-

cated enrichment for ‘‘multi-ciliated epithelial cell differentiation’’

(Table S1; Figure S5B) (Mi et al., 2013; Walentek and Quigley,

2017). In contrast, GO-term analysis of significantly downregu-

lated genes identified an enrichment for the terms ‘‘focal adhe-

sion,’’ ‘‘actin cytoskeleton,’’ and ‘‘extracellular matrix’’ (Fig-

ure S5B). These terms were also found to be enriched within

the human airway BC transcriptome, suggesting loss of BCs

(Hackett et al., 2011). Next, we compared the list of differentially

expressed genes in DN-tp63 morphants with the human airway

BC transcriptome and identified 41 dysregulated Xenopus

homologs, including multiple regulators of proliferation and of

cell and extracellular matrix interactions (Figure 5E). We sub-

jected their relative expression values, as well as those of DN-

tp63 (log2 fold change relative to controls), to hierarchical clus-

tering. In our analysis, we also included a subset of previously

identified Xenopus core MCC and Ionocyte markers as well as

known markers for SSCs and Goblet (outer-layer) cells (Dubaissi

et al., 2014; Hayes et al., 2007; Quigley and Kintner, 2017). The

two clusters representing the most upregulated genes over

developmental time in DN-tp63 morphants contained key

markers for MCCs (e.g., mcidas, ccno, cdc20b, foxj1, myb)

and Ionocytes (e.g., foxi1, atp6 subunits, ca12, ubp1) (Figure 5E).

In contrast, the cluster representing the most downregulated

genes over developmental time contained exclusively BC

markers (e.g., DN-tp63, itga3/6, itgb1, lamb1, cav2) and the
Figure 5. Knockdown of DN-tp63 Stimulates MCC and Ionocyte Speci

(A–D) Analysis of cell type composition by confocal microscopy and staining for M

PNA staining, magenta), and Goblet (outer-layer) cells (small granules, PNA stain

(A) DN-tp63 MO increases MCC and Ionocyte numbers but reduces numbers of

(B) BIO application from st. 11 does not affect MCC and Ionocyte numbers but p

(C and D) Quantification from (A) and (B), respectively. Mann Whitney test, not si

(E) RNA sequencing at st. 10, 17, and 25 on Xenopusmucociliary organoids comp

and hierarchical clustering of log2 fold changes (fcs) in cell type gene express

‘‘downregulated’’ cluster (blue).

Related to Figure S5.
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key transcription factor for SSC specification foxa1 (Figure 5E).

Together, these data not only revealed a high degree of func-

tional and transcriptional homology between human and Xeno-

pus mucociliary BCs but also demonstrated that DN-tp63 was

necessary for the maintenance of BCs during development,

which was in turn required to generate a normal cell type compo-

sition in themucociliary epidermis. Furthermore, these data were

in line with previous work, demonstrating that loss of DN-TP63

impaired regeneration and induced senescence in human ALI

cultures (Arason et al., 2014). Therefore, wewondered if elevated

Wnt/b-catenin signaling in the airway basal compartment was

required for the maintenance DN-TP63 expression and BCs in

human cells after epithelialization as well. To test this, we in-

hibited Wnt/b-catenin signaling by addition of human recombi-

nant DKK1 protein (DKK1) to the medium of differentiating BCI

ALI cultures starting at ALI day 7. Quantification of cell type

markers and mRNA expression levels by immunofluorescence

and quantitative real-time PCR showed a moderate increase in

MCCs and Club cells and a relative decrease in BCs in DKK1-

treated cultures but not a long-term loss of BCs (Figures 6A–

6F). Furthermore, proliferation and the total number of epithelial

cells remained unchanged, and Mucin production was not in-

hibited after DKK1 treatment (Figures S5C–S5H). These data

indicated that Wnt/b-catenin regulated the decision between

BC identity and differentiation into epithelial cell types but that

it was dispensable in later phases of in vitro regeneration for

maintenance of DN-TP63 expression and BCs. In summary,

our experiments demonstrated that DN-TP63 was a master

transcription factor in BCs regulating the decision between dif-

ferentiation and basal stem cell fate in vertebrate mucociliary

epithelia and that Wnt/b-catenin was required for maintaining

DN-TP63 expression and BCs during development but not in

later phases of regeneration.

Wnt/b-Catenin-Induced Block of Differentiation Is
Reversible
Given the importance of correctly regulated Wnt/b-catenin

signaling for BCs as well as for the generation of correct cell

type composition in mucociliary epithelia, we were interested

to elucidate if prolonged exposure to elevated Wnt signaling

would alter BC behavior rendering them incompetent to (re-)

generate a normal mucociliary epithelium. To address that, we

treated Xenopus embryos with BIO starting at st. 8 but removed

the drug from the medium at various stages and assessed cell

type composition by immunofluorescence and ISH. Treatment

with BIO from st. 8 until st. 30 caused reduced MCC, Ionocyte,

and SSC numbers, which recovered after wash-out of the drug
fication at the Expense of BC and SSCs in Xenopus

CCs (Ac.-a-tubulin, green), Ionocytes (no staining, black), SSCs (large vesicles,

ing, magenta) at st. 34 (A) and st. 30 (B). Actin staining (green).

SSCs.

revents specification of SSCs.

gnificant, ns (p > 0.05); *p % 0.05; **p % 0.01; ***p % 0.001.

aring controls toDN-tp63MO injected. n = 3 per stage and treatment. Heatmap

ion in DN-tp63 morphants relative to controls. ‘‘Upregulated’’ clusters (red);
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and subsequent regeneration until st. 33 (Figure 7A; Figure S6A).

Similarly, treatment with BIO from st. 8 until st. 17 confirmed

reduced expression of cell type specification markers as well

as a thickening of the DN-tp63 expressing sensorial layer.

Removal of the drug at st. 17 and regeneration until st. 25

brought back the expression of epithelial cell type markers and

reduced sensorial layer thickness andDN-tp63 expression close

to normal levels (Figure 7B; Figures S6B–S6D). To test if this

remarkable regenerative ability was limited to Xenopus develop-

ment, we conducted analogous experiments in BCI ALI cultures.

BCI cultures were treated with RSPO2 from ALI day 7 until day

21, resulting in deficient formation of MCCs and Club cells.

Then, RSPO2 was removed from the medium and BCIs were

allowed to recover for 7 days. After removal of RSPO2, BCIs

were able to successfully regenerate MCCs and Club cells and

to express cell type markers for epithelial cell types, without

drastic changes in proliferation or epithelial cell numbers

(Figure 7C; Figures S7A–S7F). Additionally, orthogonal optical

sections of RSPO2-treated BCIs after recovery revealed a

normalization of epithelial thickness and KRT5 staining (Figures

7D and 7E). Collectively, our work revealed that excessive levels

of Wnt signaling cause overactivation of DN-TP63 and block

specification of epithelial cell types in a reversible manner,

without altering the potential of BCs to formMCCs and secretory

cells.

DISCUSSION

Our work demonstrates a requirement for dynamically regulated

Wnt/b-catenin signaling in MCCs and BCs cells of the devel-

oping and regenerating mucociliary epithelium as well as a

pro-proliferative effect of Wnt/b-catenin in mucociliary epithelia.

ElevatedWnt/b-catenin signaling blocks cell fate specification of

ciliated and secretory cells from BCs, while Wnt signaling during

stages of differentiation promotes MCCs differentiation and

ciliogenesis.

In BCs, high Wnt/b-catenin levels promote the expression of

DN-tp63, a hallmark marker for BCs in various epithelia,

including the mammalian respiratory tract (Hogan et al., 2014;

Soares and Zhou, 2018; Zuo et al., 2015). We also provide evi-

dence that DN-tp63 is necessary and sufficient to promote BC

fate and to inhibit specification into mature epithelial cells,

including MCCs and secretory cells. DN-tp63 was previously

shown to be directly regulated by b-catenin in ChIP-seq studies

in mammals and Xenopus and by promoter analysis (Kjolby and

Harland, 2017; Ruptier et al., 2011). DN-tp63 is also known to

inhibit differentiation and to promote proliferation in various
Figure 6. Inhibition of Wnt/b-Catenin Signaling Transiently Reduces S

(A–F) BCIs in ALI culture for up to 4 weeks. Human recombinant DKK1 (DKK1) w

(A) Confocal imaging of specimens stained for Ac.-a-tubulin (MCCs, blue), CC10

increased MCC and Club cell numbers after DKK1 treatment.

(B) DKK1 leads to a transient decrease in BCs but does not lead to loss of DN-T

(C) Quantification from (A) and (B), respectively. Mann Whitney test, not significa

(D) Quantitative real-time PCR expression levels are depicted relative to stage co

extent Club cell (SCGB1A1) markers but without reduction of BC markers (DN-TP

(E and F) Optical orthogonal sections of confocal images after staining for BC m

Related to Figure S5.
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cancers as well as in skin BCs (keratinocytes); in part this is

regulated by transcription of cell cycle and pro-proliferative

genes, which are also regulated by DN-tp63 in Xenopus (Chen

et al., 2018; Soares and Zhou, 2018). To clarify whether these

inhibitory effects are primarily caused by promoting prolifera-

tion or direct suppression of differentiation genes by DN-tp63

has to be further investigated in the future. Nevertheless, our

work provides a mechanistic explanation for the negative ef-

fects of elevated Wnt/b-catenin on mucociliary differentiation

reported in multiple studies and implicatesDN-tp63 as potential

driver of proliferation after mucociliary injury. Interestingly, DN-

tp63 is not required for initial formation of a mucociliary epithe-

lium during development (Daniely et al., 2004). Nevertheless,

we found that DN-tp63 expression is required for maintenance

of BCs and that a loss of DN-tp63 leads to excessive cell

fate specification and differentiation of MCCs and Ionocytes

causing a deficiency in late-specified SSCs in the Xenopus

epidermis, thereby altering mucociliary cell type composition.

Similar observations were made in developing tp63�/� mice,

in which airway mucociliary epithelia formed during develop-

ment, but those epithelia presented an excess of MCCs and a

loss of BCs (Daniely et al., 2004). Furthermore, knockdown of

TP63 in ALI cultures of human airway cells prevents regenera-

tion and causes senescence, indicating loss of stemness

(Arason et al., 2014). Collectively, these findings support the

conclusion that DN-tp63 is a Wnt/b-catenin-regulated master

transcription factor in BCs, deciding between BC maintenance

and differentiation. Interestingly, Wnt/b-catenin is dispensable

to maintain DN-TP63 and BCs after epithelialization in regener-

ating BCIs, suggesting that DN-TP63 can be maintained by

other pathways when BCs are confluent. This could be

achieved by Notch signaling, which was previously shown to

regulate BCs (Rock et al., 2011) but requires cell-cell contact

provided by a sufficient density of cells. Furthermore, our data

demonstrate a deep evolutionary conservation of signaling

and regulatory mechanisms across vertebrate mucociliary

epithelia, establish the Xenopus epidermis as a model to study

BCs in vivo, and provide a set of conserved BC genes, which

can be used as BC markers in Xenopus and studied

mechanistically in the future.

In MCCs, Wnt/b-catenin signaling during differentiation

stages is required for normal ciliation. These results are in

line with previous work demonstrating that Wnt/b-catenin

signaling is necessary for normal ciliogenesis in various

vertebrate systems by co-regulating foxj1, a master transcription

factor for motile cilia (Caron et al., 2012; Sun et al., 2018;

Walentek et al., 2015). The positive effect of Wnt/b-catenin on
temness and Promotes Differentiation in Human BCs

as used to inhibit Wnt/b-catenin signaling starting at ALI day 7 (D7).

(Club cells, green), and Actin (cell membranes, magenta) shows moderately

P63+ (green) cells. Nuclei (DAPI, blue).

nt, ns (p > 0.05); ***p % 0.001.

ntrols. DKK1 increases expression of MCC (FOXJ1, MCIDAS) and to a lesser

63, KRT5). Student’s t test, not significant, ns (p > 0.05); *p% 0.05; **p% 0.01.

arkers DN-TP63 (green, in E) and KRT5 (green, in F).



Figure 7. Wnt/b-Catenin-Induced Increase

in BCs and Loss of Epithelial Differentiation

Are Reversible

(A and B) In Xenopus, BIO treatments from st. 8–17

or st. 8–30 inhibit differentiation as compared to

DMSO treated controls, but the epithelium can

regenerate after removal of BIO and recovery until

st. 33 (A) or st. 25 (B).

(A) BIO treatment reduces MCC (Ac.-a-tubulin,

green), Ionocyte (no staining, black), and SSC

(large vesicles, PNA staining, magenta) numbers in

confocal micrographs at st. 28, which recover af-

ter regeneration until st. 33. Actin staining (green).

(B) ISH shows reduction in foxj1 expressing cells

and an increase in DN-tp63 expression in BIO-

treated whole mounts (upper row) and transversal

sections (bottom row) at st. 17, which both recover

after regeneration until st. 25. DMSO (n = 5); BIO

st. 17 (n = 5); DMSO st. 25 (n = 5); BIO+recovery st.

25 (n = 5).

(C) Confocal imaging of specimens stained for

Ac.-a-tubulin (MCCs, blue), CC10 (Club cells,

green), and Actin (cell membranes, magenta)

show reduced MCC and Club cell numbers in

RSPO2-treated cultures from ALI D7 to D21 but

regeneration of MCCs and Club cells at ALI D28.

n = 3 cultures per time point and treatment (upper

panels). No loss of DN-TP63+ (green) BCs is

observed in these experiments (bottom panels).

Nuclei (DAPI, blue).

(D and E) Optical orthogonal sections of confocal

images. RSPO2-treated cultures display normal-

ized epithelial thickness and staining for BC

markersDN-TP63 (green, in D) and KRT5 (green, in

E) after regeneration at ALI D28.

Related to Figures S6 and S7.
MCC specification suggested by some studies could be ex-

plained by the extensive positive cross-regulation between

transcription factors expressed in MCCs. The multiciliogenesis

cascade is initiated by a transcriptional regulatory complex

consisting of Multicilin (encoded by mcidas), E2f4/5, and

TfDp1, which activates expression of the downstream

transcription factors foxj1, rfx2/3, myb, tp73, and foxn4 (Quigley

and Kintner, 2017; Stubbs et al., 2012; Walentek and Quigley,

2017). These transcription factors generate a positive feedback

on their expression (Choksi et al., 2014; Quigley and Kintner,

2017). This positive cross-regulation was especially well

demonstrated for FOXJ1 and RFX2/3 and argues for the

possibility that activation of FOXJ1 could ultimately lead to

activation of the multiciliogenesis cascade (Didon et al., 2013).
Cell Reports
Additionally, we have previously found

that myb expression is downre-

gulated after inhibition of Wnt/b-catenin

signaling, suggesting that myb could

be regulated by Wnt signaling as well

(Tan et al., 2013; Walentek et al., 2015).

Thus, different levels and timing of

Wnt/b-catenin signaling activation could

provide an explanation as to why some

studies reported negative effects on
MCC formation, while others described an increase in MCC

numbers.

Our data argue that the loss of differentiated MCCs upon

excessive Wnt activation is a consequence of impaired specifi-

cation, rather than Goblet cell hyperplasia as previously sug-

gested (Mucenski et al., 2005). While we did not observe an in-

crease in MUC5B expressing cells in the epithelium after Wnt

activation, we did detect elevated MUC5B expression levels.

This suggests potential induction of subepithelial Goblet cell for-

mation in vitro after overactivation of Wnt/b-catenin signaling,

similar to the induction of Goblet cells in submucosal glands

(Driskell et al., 2004).

Finally, our data indicate that persistent Wnt/b-catenin activa-

tion in mucociliary epithelia could lead to BC hyperplasia and
28, 3338–3352, September 24, 2019 3349



a remodeling of the epithelium. Importantly, we show that these

effects are reversible and that a return to normal signaling levels

can promote re-establishment of a differentiated epithelium. This

is an important notion in the context of chronic lung diseases,

such as COPD and IPF. IPF leads to a destruction of lung tissue

starting at the alveoli, which is strongly associated with upregu-

latedWnt signaling, extracellular matrix deposition, and failure of

alveolar stem cells to regenerate correctly, while COPD is

associated with defective mucociliary epithelial differentiation,

BC hyperplasia, altered Wnt ligand expression, and overactiva-

tion of the Wnt/b-catenin pathway (Baarsma and Königshoff,

2017; Chen et al., 2010; Heijink et al., 2013; Königshoff et al.,

2008). Furthermore, it was shown that nasal polyps from chronic

rhinosinusitis patients produce excess levels of WNT3a and

MCC differentiation is inhibited but that MCC formation could

be rescued by application of a Wnt inhibitor (Dobzanski et al.,

2018). Together, these findings suggest that even in a chronically

pathogenic state, targeted Wnt/b-catenin signaling inhibition

could provide a potential avenue for treatment of patients with

COPD and other chronic lung diseases for which treatment

options are currently limited or absent.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse anti-Acetylated-a-tubulin (1:700 – 1:1000, XL,

HS, MM)

Sigma/Merck T6793

rabbit anti-GFP (1:500, XL) Abcam ab290

rabbit anti-Cytokeratin 5 (1:500, HS) Thermo Fisher PA1-37974

rabbit anti-human Club Cell Protein (1:1000, HS) BioVendor RD181022220-01

rabbit anti-human p63 (pan-p63, 1:500, HS) Proteintech 12143-1-AP

rabbit anti-mouse Uteroglobin (1:500, MM) Abcam ab40873

mouse anti-Ki-67 (1:1000, HS) Cell Signaling 9449

mouse anti-Muc5B (1:500, HS) Santa Cruz Biotech sc-393952

rabbit anti-Serotonin (1:500, XL) Merk/Milipore AB938

AlexaFluor 555-labeled goat anti-mouse Molecular Probes A21422

AlexaFluor 488-labeled donkey anti-mouse Molecular Probes R37114

AlexaFluor 488-labeled goat anti-rabbit Molecular Probes R37116

AlexaFluor 405-labeled goat anti-mouse Molecular Probes A31553

Bacterial Strains

NEB� 5-alpha Competent E. coli (High Efficiency) New England Biolabs C2987H

Chemicals, Peptides, and Recombinant Proteins

6-Bromoindirubin-30-oxime (BIO) Sigma-Aldrich/Merck B1686

Dexamethasone Sigma-Aldrich/Merck D4902

RNase Inhibitor Promega N251B

Dig-labeled rNTPs Roche 3359247910, 11277057001

human recombinant RSPO2 R&D systems 3266-RS

human recombinant DKK1 R&D systems 5439-DK

AlexaFluor 488-labeled Phalloidin Molecular Probes A12379

AlexaFluor 647-labeled Phalloidin Molecular Probes A22287

AlexaFluor 647-labeled PNA Molecular Probes L32460

Critical Commercial Assays

PureYield Midiprep kit Promega A2495

Ambion mMessage Machine kit Thermo Fisher AM1340

T7 RNA polymerase Promega P2077

SP6 RNA polymerase Promega P108G

TruSeq RNA Library Preparation Kit v2, Set A Illumina RS-122-2301

RNA Analysis Kit Advanced Analytical DNF-471

QuantiFluordsDNA System Promega E2670

dsDNA 905 Reagent Kit Advanced Analytical DNF-905

BEGM Bullet Kit Lonza CC-3170

RNeasy Mini Kit QIAGEN 74104

QIAshredder QIAGEN 79654

iScript cDNA Synthesis Kit Bio-Rad 1708891

Sso Advanced Universal SYBR Green Supermix Bio-Rad 1725275

Deposited Data

RNA-sequencing data This paper GEO: GSE130448

Experimental Models: Cell Lines

Human: BCi-NS1.1 Ronal Crystal laboratory RRID:CVCL_T029

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Xenopus laevis: pbin7LEF:dGFP:

Xla.Tg(WntREs:dEGFP)Vlemx

National Xenopus Resource NXR_0064

Wild type Xenopus laevis EXRC, NXR N/A

Mouse: TCF/LEF:H2B-GFP: TCF/Lef1-HISTH2BB/

EGFP 61Hadj/J

Jackson Laboratories 013752

Oligonucleotides

b-catenin MO: 50-TTTCAACCGTTTCCAAAGAAC

CAGG �30
Gene Tools N/A

DN-tp63 MO: 50-GATACAACATCTTTGCAGTG

AGGTT-30
Gene Tools N/A

DN-tp63-f: AAAAAAGGATCCATGTTGTATCTGGA

AAACAATG

Sigma Aldrich N/A

DN-tp63-stop-r: GTCGACTCATTCACCCTCTTCCT

TAATAC

Sigma Aldrich N/A

DN-tp63-nonstop-r: GTCGACTTCACCCTCTTCCT

TAATAC

Sigma Aldrich N/A

gfp-f: AAAAAAGGATCCATGGTGAGCAAGGGCG

AGGAGCTGTTC

Sigma Aldrich N/A

gfp-r: AAAAAAGGATCCCTTGTACAGCTCGTCCA

TGCCATGCCGAGAGTG

Sigma Aldrich N/A

gr-lbd-f: CAACGTATTAAGGAAGAGGGTGAAGT

CGACACCTCTGAAAATCCTGGTAACAAAACAA

TAGTTCC

Sigma Aldrich N/A

gr-lbd-r: TTGCGGCCGCGGCCAGATTGGCCTGT

CGACtCACTTTTGATGAAACAGAAGTTTTTTGAT

ATTTCC

Sigma Aldrich N/A

Quantitative RT-PCR primers, see Table S3 Sigma Aldrich N/A

Recombinant DNA

pCS107-DN-tp63 This paper N/A

pCS107-gfp-DN-tp63 This paper N/A

pCS107-gfp-DN-tp63-gr This paper N/A

Software

bcl2fastq v2.17.1.14 http://emea.support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software/downloads.html

N/A

FastQC v0.11.5 http://bioinformatics.babraham.ac.uk/projects/

fastqc

RNA STAR v2.6.0b-1 http://code.google.com/archive/p/rna-star/ N/A

featureCounts v1.6.3 https://sourceforge.net/projects/subread/files/ N/A

DEseq2 v1.22.1 http://bioconductor.org/packages/release/bioc/

html/DESeq2.html

N/A

R v3.5.1 https://www.rstudio.com/ N/A

ggplot2/heatmap2 v2.2.1 https://rdocumentation.org/packages/ggplot2/

versions/2.2.1

N/A

ImageJ https://imagej.nih.gov/ij/download.html N/A

NeuronJ v1.4.3 https://imagescience.org/meijering/software/

neuronj/

N/A

ZEN (black & blue) Zeiss N/A

Other (MTEC Media)

Pronase (1.5mg/ml in Pronase solution) Roche 10165921001

Ham’s F12 (Pronase solution, DNase solution) Life Technologies 11765054

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DNase (0.5mg/ml in DNase solution) Sigma DN25

DMEM:F12 (Proliferation and Differentiation medium) GIBCO 11330-032

Penicillin-Streptomycin (1% in Proliferation and

Differentiation medium, Pronase solution)

Sigma P4333

Amphotericin B (0.1% in Proliferation and

Differentiation medium)

GIBCO 15290-018

Sodium Biscarbonate (0.3% in Proliferation and

Differentiation medium)

Life Technologies 25080060

Insulin (10 mg/ml in Proliferation medium) Sigma 1182

Epidermal Growth Factor (25 mg/ml in Proliferation

medium)

BD Biosciences 354001

Apo-Transferrin (5 mg/ml in Proliferation medium) Sigma T1147

Cholera toxin (0.1 mg/ml in Proliferation medium) Sigma C8052

Bovine pituitary extract (30 mg/ml in Proliferation

medium)

Sigma SLBV9702

FBS Superior (5% in Proliferation medium) Biochrom S0615

Retinoic acid (50nM in Proliferation and Differentiation

medium)

Sigma R2625

NuSerum (2% in Differentiation medium) BD Biosciences 355100
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter

Walentek (peter.walentek@medizin.uni-freiburg.de).

Immortalized human Basal cells (BCIs) were generated and are distributed by the Crystal laboratory at Genetic Medicine/Joan and

Sanford I. Weill Department of Medicine, Weill Cornell Medical School, New York, USA. Sharing of this resource is subject to anMTA.

The Wnt reporter line Xla.Tg(WntREs:dEGFP)Vlemx was obtained from the National Xenopus Resource (NXR) at Marine Biological

Laboratory, Woods Hole, USA, and the European XenopusResource Centre (EXRC) at University of Portsmouth, School of Biological

Sciences, UK. Sharing of this resource is subject to an MTA.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Xenopus laevis
Wild-type and transgenic Xenopus laeviswere obtained from the National Xenopus Resource (NXR) at Marine Biological Laboratory,

Woods Hole, USA, and the European Xenopus Resource Centre (EXRC) at University of Portsmouth, School of Biological Sciences,

UK. Frog maintenance and care was conducted according to standard procedures and based on recommendations provided by the

international Xenopus community resource centers NXR and EXRC as well as by Xenbase (http://xenbase.org). All experiments were

conducted in embryos derived from at least two different females and independent in vitro fertilizations.

Mice
Mice from the strain TCF/Lef1-HISTH2BB/EGFP (61Hadj/J) (Ferrer-Vaquer et al., 2010) were obtained from the Jackson Laboratories

(JAX) and genotyped using the protocol deposited under https://jax.org/strain/013752. Reporter analysis was conducted on tissues

derived frommale and female animals and no differences were observed between the sexes. Animal care was conducted by central-

ized facilities and according to standard procedures.

Immortalized Human Basal Cells (BCIs)
BCIs were generated as described in Walters et al. (2013) and were provided by the Crystal laboratory. All experiments were con-

ducted on cells derived from the same passage (passage 10). Expansion and ALI cultures of BCIs were conducted according to

Walters et al. (2013) at 37�C.

Ethics Statements on Animal Experiments
This work was done in compliance with German animal protection laws and was approved under Registrier-Nr. X-18/02F and

G-18/76 by the state of Baden-W€urttemberg, as well as with approval of University of California, Berkeley’s Animal Care and Use
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Committee. University of California Berkeley’s assurance number is A3084-01, and is on file at the National Institutes of Health

Office of Laboratory Animal Welfare.

METHOD DETAILS

Manipulation of Xenopus Embryos, Constructs, and In Situ Hybridization
X. laevis eggs were collected and in vitro-fertilized, then cultured and microinjected by standard procedures (Sive et al., 2010). Em-

bryos were injectedwithMorpholino oligonucleotides (MOs, Gene Tools) andmRNAs at the four-cell stage using a PicoSpritzer setup

in 1/3x Modified Frog Ringer’s solution (MR) with 2.5% Ficoll PM 400 (GE Healthcare, #17-0300-50), and were transferred after in-

jection into 1/3x MR containing Gentamycin. Drop size was calibrated to about 7–8 nL per injection.

Morpholino oligonucleotides (MOs) were obtained from Gene Tools targeting ctnnb1.L and .S (Heasman et al., 2000), or targeting

DN-tp63.L and .S (this study), and used at doses ranging between 34 and 51ng (or 4-6pmol).

DN-tp63 was cloned from total cDNA into pCS107 using DN-tp63-f and DN-tp63-stop-r primers matching NCBI reference

sequence XM_018261616.1. BamH1/Sal1 restriction enzymeswere used for subcloning. A gfp-DN-tp63 fusion construct was gener-

ated using gfp-f and gfp-r, and BamH1 restriction enzyme to fuse GFP to the N terminus of pCS107-DN-tp63. A hormone-inducible

gfp-DN-tp63-gr fusion construct was generated using a non-stop-sequence (DN-tp63-nonstop-r), primers for the GR-domain (Kolm

and Sive, 1995) gr-lbd-f and gr-lbd-r, and Sal1 restriction enzymes to fuse the GR domain to the C terminus of pCS107-gfp-DN-tp63.

All sequences were verified by Sanger sequencing, and linearized with Asc1 to generatemRNAs (used at 150ng/ml) and pCS107-DN-

tp63 with BamH1 to generate an anti-sense probe template.

mRNAs encodingmembrane-GFP ormembrane-RFP or Centrin4-CFP (Antoniades et al., 2014) were used in some experiments as

lineage tracers at 50 ng/mL (not shown). All mRNAs were prepared using the Ambion mMessage Machine kit using Sp6 (#AM1340).

DNAs were purified using the PureYield Midiprep kit (Promega, #A2495) and were linearized before in vitro synthesis of anti-sense

RNA probes using T7 or Sp6 polymerase (Promega, #P2077 and #P108G), RNase Inhibitor (Promega #N251B) and Dig-labeled

rNTPs (Roche, #3359247910 and 11277057001). Embryos were in situ hybridized according to Harland (1991), bleached after stain-

ing and imaged. Sections were made after embedding in gelatin-albumin with glutaraldehyde at 50-70 mm as described in Walentek

et al. (2012).

Drug treatment of embryos started and ended at the indicated stages. DMSO (Sigma, #D2650) or ultrapure Ethanol (NeoFroxx

#LC-8657.3) were added to the medium as vehicle controls. 6-Bromoindirubin-30-oxime (BIO, Sigma-Aldrich/Merck #B1686) was

used in DMSO at 75 mM (BIO low) or 150 mM (BIO high). Dexamethasone (Sigma-Aldrich/Merck #D4902) was used in Ethanol at

10 mM.

Morpholino nucleotide and cloning primer sequences:
Name Sequence

b-catenin MO 50-TTTCAACCGTTTCCAAAGAACCAGG �30

DN-tp63 MO 50-GATACAACATCTTTGCAGTGAGGTT-30

DN-tp63-f AAAAAAGGATCCATGTTGTATCTGGAAAACAATG

DN-tp63-stop-r GTCGACTCATTCACCCTCTTCCTTAATAC

DN-tp63-nonstop-r GTCGACTTCACCCTCTTCCTTAATAC

gfp-f AAAAAAGGATCCATGGTGAGCAAGGGCGAGG

AGCTGTTC

gfp-r AAAAAAGGATCCCTTGTACAGCTCGTCCATGC

CATGCCGAGAGTG

gr-lbd-f AAAAAGTCGACCCTCTGAAAATCCTGGTAA

CAAAAC

gr-lbd-r AAAAAGTCGACCTACACTTTTGATGAAACAGAAG
Generation of the Xenopus Wnt/b-catenin Signaling Reporter Line
The Wnt reporter line Xla.Tg(WntREs:dEGFP)Vlemx was generated using the sperm nuclear transfer method as described in detail in

Hirsch et al. (2002). The Wnt-responsive promoter consists of 7 copies of a TCF/LEF1 binding DNA element and a minimal TATA box

and a reporter gene encoding destabilized EGFP and a polyA sequence. The transgene is flanked on both sides by two copies of the

chicken HS4-core sequence (Tran et al., 2010).

RNA-Sequencing on Xenopus Mucociliary Organoids and Bioinformatics Analysis
X. laevis embryos were either injected 4x into the animal hemisphere at four-cell stage withDN-tp63MOor remained uninjected, and

were cultured until st. 8. Animal capswere dissected in 1xModifiedBarth’s solution (MBS) and transferred to 0.5xMBS+Gentamycin
e4 Cell Reports 28, 3338–3352.e1–e6, September 24, 2019
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Sive et al., 2010). 10-15 organoids were collected in TRIzol (Thermo Fisher #15596026) per stage at st. 10.5 (st. 10), st. 16-19 (st. 17)

and st. 24-25 (st. 25). Organoids were derived from 3 independent experiments.

500 ng total RNA per sample was used, poly-A selection and RNA-sequencing library preparation was done using non strand

massively-parallel cDNA sequencing (mRNA-Seq) protocol from Illumina, the TruSeq RNA Library Preparation Kit v2, Set A (Illumina

#RS-122-2301) according to manufacturer’s recommendation. Quality and integrity of RNA was assessed with the Fragment

Analyzer from Advanced Analytical by using the standard sensitivity RNA Analysis Kit (Advanced Analytical #DNF-471). All samples

selected for sequencing exhibited an RNA integrity number over 8. For accurate quantitation of cDNA libraries, the Quanti-

FluordsDNA System from Promega was used. The size of final cDNA libraries was determined using the dsDNA 905 Reagent Kit

(Advanced Bioanalytical #DNF-905) exhibiting a sizing of 300 bp on average. Libraries were pooled and paired-end 100bp

sequencing on a HiSeq2500 was conducted at the Transcriptome and Genome Analysis Laboratory, University of Göttingen.

Sequence images were transformed with Illumina software BaseCaller to BCL files, which was demultiplexed to fastq files with

bcl2fastq v2.17.1.14. Quality control was done using FastQC v0.11.5 (Andrews, 2010). ‘‘FastQC a quality-control tool for high-

throughput sequence data’’ available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc).

Sequencing generated a total of 2x 581.7 Mio reads (average 2x 32.3 Mio / library). After adaptor-trimming, paired-end reads were

mapped to Xenopus laevis genome assembly v9.2 using RNA STAR v2.6.0b-1 (Dobin et al., 2013). featureCounts v1.6.3 (Liao et al.,

2014) was used to count uniquely mapped reads per gene and statistical analysis of differential gene expression was conducted in

DEseq2 v1.22.1 (Love et al., 2014). Go-term analysis was donewith ‘‘humanized’’ versions of Xenopus gene names (by removing ‘‘.L’’

and ‘‘.S’’ from the name) using the GO Consortium website (http://geneontology.org). Heatmaps were generated in R v3.5.1 using

ggplot2/heatmap2 v2.2.1. All bioinformatic analysis was performed on the Galaxy / Europe platform (http://usegalaxy.eu).

Air-Liquid Interface (ALI) Culture of Immortalized Human Basal Cells (BCIs)
ALI cultures of BCIs were conducted according toWalters et al. (2013) on Costar Transwell Filters (Costar #3470), coated with human

Type IV Collagen (Sigma #C7521) dissolved in Acetic acid (Carl Roth #3738.4). For Basal cell expansion the BEGM Bullet Kit (Lonza

#CC-3170) was used with all supplements as recommended by the manufacturer, but without the antibiotics. Instead, Penicillin-

Streptomycin (0.5%, Sigma #P4333), Gentamycin sulfate (0.1%, Carl Roth, #2475.1) and Amphotericin B (0.5%, GIBCO #15290-

018) were added. Differentiation of cells was conducted in DMEM:F12 (GIBCO #11330-032) with UltroserG (2%, Pall BioSphera-Sci-

ence #15950-017 dissolved in sterile cell culture grade water from GIBCO #15230-071), and Penicillin-Streptomycin (0.5%, Sigma

#P4333), Gentamycin sulfate (0.1%, Carl Roth, #2475.1) and Amphotericin B (0.5%, GIBCO #15290-018) for up to 28 days. Media

were filtered (0.22 mm) before use. Manipulations of Wnt signaling were done by addition of human recombinant RSPO2 (R&D sys-

tems 3266-RS) or human recombinant DKK1 (R&D systems 5439-DK), which were reconstituted in sterile PBS, pH 7.4 containing

0.1% bovine serum albumin at 200ng/ml.

ALI Culture of Primary Mouse Tracheal Epithelial Cells (MTECs)
ALI cultures of MTECs were conducted according to Vladar and Brody (2013) on Costar Transwell Filters (Costar #3470), coated with

rat tail Collagen (BD Biosciences #354236) in Acetic acid. Cells were isolated from TCF/Lef1-HISTH2BB/EGFP (61Hadj/J). Reagents

and supplements were used as indicated in the protocol (see Key Resources Table for details). Primaria cell culture dishes (Corning

#353803) were used for selection during the procedure. Cells were cultured for up to 21 days.

Quantitative RT-PCR on cDNAs from BCIs
Before total RNA extraction from BCIs, filters were washed 3x 5 min with PBS and removed from the insets using a scalpel cleaned

with RNase away (MbP #7002). The RNeasy Mini Kit (QIAGEN #74104) was used, and the cells were collected in RLT buffer + b-Mer-

captoethanol (10 mL / ml), vortexed for 2 min, and lysed using QIAshredder (QIAGEN #79654) columns. RNA was collected in Ultra-

Pure water (Invitrogen #10977-035) and used for cDNA synthesis with iScript cDNA Synthesis Kit (Bio-Rad #1708891). qPCR-reac-

tions were conducted using Sso Advanced Universal SYBR Green Supermix (Bio-Rad #172-5275) on a CFX Connect Real-Time

System (Bio-Rad) in 96-well PCR plates (Brand #781366). Experiments were conducted in biological and technical triplicates and

normalized by GAPDH and ODC expression levels. Expression levels were analyzed in Excel and graphs were generated using R.

Primers and sequences can be found in Table S3.

Immunofluorescence Staining and Sample Preparation
Whole Xenopus embryos, were fixed at indicated stages in 4% paraformaldehyde at 4�C over-night or 2 h at room temperature, then

washed 3x 15 min with PBS, 2x 30 min in PBST (0.1% Triton X-100 in PBS), and were blocked in PBST-CAS (90% PBS containing

0.1% Triton X-100, 10% CAS Blocking; ThermoFisher #00-8120) for 1h at RT. For cryo sections, embryos were equilibrated in 50%

Sucrose at 4�C over-night, embedded in O.C.T. cryomedium (Tissue-Tek #25608-930), frozen at�80�C, and sectioned at 30-50 mm.

Immunostaining on sections was done as for whole embryos after initial 3x 15 min washes with PBS and 15 min re-fixation in 4%

paraformaldehyde at RT.

Mouse lungs were dissected, washed in ice-cold PBS several times and fixed at indicated stages in 4% paraformaldehyde at 4�C
for >24 h. The tissue was then equilibrated in 50% Sucrose at 4�C over-night, embedded in O.C.T. cryomedium (Tissue-Tek #25608-

930), frozen at�80�C, and sectioned at 10-14 mm. For immunostaining, sections were washed 3x 15min with PBS and re-fixed in 4%
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paraformaldehyde at RT 15 min followed by 2x 30 min washes in PBST (0.1% Triton X-100 in PBS). Samples were blocked in PBST-

CAS (90% PBS containing 0.1% Triton X-100, 10% CAS Blocking) for 30 min – 1 h at RT.

MTEC and BCI cells grown in ALI culture were washed 3x 5 min with PBS before fixation in 4% paraformaldehyde at 4�C for >24 h.

The culture filters were removed from the insets using a scalpel, divided into multiple parts and used for different combinations of

stains. Filter parts were washed 2x 30 min in PBST (0.1% Triton X-100 in PBS) and blocked in PBST-CAS (90% PBS containing

0.1% Triton X-100, 10% CAS Blocking) for 30 min – 1 h at RT. A list of primary antibodies used in this study can be found in the

Key Resources Table.

Secondary antibodies (used at 1:250): AlexaFluor 555-labeled goat anti-mouse antibody (Molecular Probes #A21422), AlexaFluor

488-labeled goat anti-rabbit antibody (Molecular Probes #R37116), AlexaFluor 488-labeled donkey anti-mouse antibody (Molecular

Probes #R37114), AlexaFluor 405-labeled goat anti-mouse antibody (Molecular Probes #A-31553). All antibodies were applied in

100%CASBlocking (ThermoFisher #00-8120) over night at 4�C or 2 h at RT (for secondary antibodies). DAPI was used to label nuclei

(applied for 30 min. at room temperature, 1:100 in PBSt; Molecular Probes #D1306) in Xenopus. ProLong Gold Antifade Mountant

with DAPI (Molecular Probes #P36931) was used to label nuclei in mouse and human samples. Actin was stained by incubation

(30-120 min at room temperature) with AlexaFluor 488- or 647-labeled Phalloidin (1:40 in PBSt; Molecular Probes #A12379 and

#A22287), mucus-like compounds in Xenopus were stained by incubation (overnight at 4�C) with AlexaFluor 647-labeled PNA

(1:1000 in PBSt; Molecular Probes #L32460).

Confocal Imaging, Image Processing, and Analysis
Confocal imaging was conducted using a Zeiss LSM700 or Zeiss LSM880 and Zeiss Zen software. Wnt reporter sections from Xen-

opus and mice were imaged using tile-scans and images were reconstructed in ImageJ or Adobe Photoshop. Confocal images were

adjusted for channel brightness/contrast and Z stack projections or orthogonal sections were generated using ImageJ. A detailed

protocol for quantification of Xenopus epidermal cell types was published (Walentek, 2018). Images of embryos after in situ hybrid-

ization and corresponding sections were imaged using an AxioZoom setup or AxioImager.Z1, and images were adjusted for color

balance, brightness, and contrast using Adobe Photoshop. Measurement of DN-tp63 domain thickness in Xenopuswas done in Im-

ageJ using the NeuronJ plugin.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Evaluation
Stacked bar graphs were generated in Microsoft Excel, boxplots and heatmaps were generated in R (the line represents the median;

50% of values are represented by the box; 95% of values are represented within whiskers; values beyond 95% are depicted as out-

liers). Statistical evaluation of experimental data was performed using chi-square tests (http://www.physics.csbsju.edu/stats/

contingency.html), Wilcoxon sum of ranks (Mann-Whitney) tests (https://astatsa.com/WilcoxonTest/), or Student’s t test (http://

www.physics.csbsju.edu/stats/t-test.html) as indicated in figure legends.

Sample Size and Analysis
Sample sizes for all experiments were chosen based on previous experience and used embryos derived from at least two different

females in Xenopus. Analysis of mouse Wnt-reporter was conducted in samples from N > 3 animals. No randomization or blinding

was applied.

Use of Shared Controls
For parts of cell type quantification in Xenopus and BCIs, and qPCR experiments in BCIs shared controls or other conditions were

used in multiple figures/graphs. Therefore, a detailed log of manipulation experiments in Xenopus and BCIs is provided in Table S2. It

contains information on experiment number, species/model, type of experiment, conditions, number of specimens, and in which

figure/graph the data were used throughout the manuscript.

DATA AND SOFTWARE AVAILABILITY

RNA-seq data have been deposited in the NCBI Gene expression Omnibus (GEO) database under the ID: GEO: GSE130448 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130448).
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