20 research outputs found

    Pacing Profiles in Competitive Track Races: Regulation of Exercise Intensity is related to Cognitive Ability

    Get PDF
    Pacing has been defined as the goal-directed regulation of exercise intensity over an exercise bout, in which athletes need to decide how and when to invest their energy. The purpose of this study was to explore if the regulation of exercise intensity during competitive track races is different between runners with and without intellectual impairment, which is characterized by significant limitations in intellectual functioning (IQ ≤ 75) and adaptive behavioral deficits, diagnosed before the age of 18. The samples included elite runners with intellectual impairment (N = 36) and a comparison group of world class runners without impairment (N = 39), of which 47 were 400 m runners (all male) and 28 were 1500 m-runners (15 male and 13 female). Pacing was analyzed by means of 100 m split times (for 400 m races) and 200 m split times (for 1500 m races). Based on the split times, the average velocity was calculated for four segments of the races. Velocity fluctuations were defined as the differences in velocity between consecutive race segments. A mixed model ANOVA revealed significant differences in pacing profiles between runners with and without intellectual impairment (p < 0.05). Maximal velocity of elite 400 m runners with intellectual impairment in the first race segment (7.9 ± 0.3 m/s) was well below the top-velocity reached by world level 400 m runners without intellectual impairment (8.9 ± 0.2 m/s), and their overall pace was slower (F = 120.7, p < 0.05). In addition, both groups followed a different pacing profile and inter-individual differences in pacing profiles were larger, with differences most pronounced for 1500 m races. Whereas, male 1500 m-runners without intellectual impairment reached a high velocity in the first 100 m (7.2 ± 0.1 m/s), slowly decelerated in the second race segment (−0.6 ± 0.1 m/s), and finished with an end sprint (+0.9 ± 0.1 m/s); the 1500 m runners with intellectual impairment started slower (6.1 ± 0.3 m/s), accelerated in the second segment (+0.2 ± 0.7 m/s), and then slowly decreased until the finish (F = 6.8, p < 0.05). Our findings support the hypothesis that runners with intellectual impairment have difficulties to efficiently self-regulate their exercise intensity. Their limited cognitive resources may constrain the successful integration of appropriate pacing strategies during competitive races

    Activity profiles of elite wheelchair rugby players during competition

    Get PDF
    To quantify the activity profiles of elite wheelchair rugby and establish classification-specific arbitrary speed zones. Additionally, indicators of fatigue during full matches were explored. Methods: Seventy-five elite wheelchair rugby players from eleven national teams were monitored using a radio-frequency based, indoor tracking system across two international tournaments. Players who participated in complete quarters (n = 75) and full matches (n = 25) were included and grouped by their International Wheelchair Rugby Federation functional classification: group I (0-0.5), II (1.0-1.5), III (2.0-2.5) and IV (3.0-3.5). Results: During a typical quarter, significant increases in total distance (m), relative distance (m·minˉ¹), and mean speed (m·sˉ¹) were associated with an increase in classification group (P < 0.001), with the exception of group III and IV. However, group IV players achieved significantly higher peak speeds (3.82 ± 0.31 m·sˉ¹) than groups I (2.99 ± 0.28 m·sˉ¹), II (3.44 ± 0.26 m·sˉ¹) and III (3.67 ± 0.32 m·sˉ¹). Groups I and II differed significantly in match intensity during very low/low speed zones and the number of high-intensity activities in comparison with groups III and IV (P < 0.001). Full match analysis revealed that activity profiles did not differ significantly between quarters. Conclusions: Notable differences in the volume of activity were displayed across the functional classification groups. However, the specific on-court requirements of defensive (I and II) and offensive (III and IV) match roles appeared to influence the intensity of match activities and consequently training prescription should be structured accordingly

    Enhancing disabilities: transhumanism under the veil of inclusion?

    Get PDF
    Technological developments for disabled athletes may facilitate their competition in standard elite sports. They raise intriguing philosophical questions that challenge dominant notions of body and normality. The case of 'bladerunner' Oscar Pistorius in particular is used to illustrate and defend 'transhumanist' ideologies that promote the use of technology to extend human capabilities. Some argue that new technologies will undermine the sharp contrast between the athlete as a cultural hero and icon and the disabled person that needs extra attention or care; the one exemplary of the peak of normality, human functioning at its best, the other representing a way of coping with the opposite. Do current ways of classification do justice to the performances of disabled athletes? The case of Oscar Pistorius will be used to further illustrate the complexities of these questions, in particular when related to notions of normality and extraordinary performances. Pistorius' desire to become part of 'normal' elite sport may be interpreted as an expression of a right to 'inclusion' or 'integration', but at the same time it reproduces new inequalities and asymmetries between performances of able and dis-abled athletes: we propose that if one accepts that Pistorius should compete in the 'regular' Olympic Games, this would paradoxically underline the differences between able and disabled and it would reproduce the current order and hierarchy between able and disabled bodies. © 2010 Informa UK, Ltd

    Biomechanical analyses of the performance of Paralympians: From foundation to elite level

    Get PDF
    Biomechanical analysis of sport performance provides an objective method of determining performance of a particular sporting technique. In particular, it aims to add to the understanding of the mechanisms influencing performance, characterization of athletes, and provide insights into injury predisposition. Whilst the performance in sport of able-bodied athletes is well recognised in the literature, less information and understanding is known on the complexity, constraints and demands placed on the body of an individual with a disability. This paper provides a dialogue that outlines scientific issues of performance analysis of multi-level athletes with a disability, including Paralympians. Four integrated themes are explored the first of which focuses on how biomechanics can contribute to the understanding of sport performance in athletes with a disability and how it may be used as an evidence-based tool. This latter point questions the potential for a possible cultural shift led by emergence of user-friendly instruments. The second theme briefly discusses the role of reliability of sport performance and addresses the debate of two-dimensional and three-dimensional analysis. The third theme address key biomechanical parameters and provides guidance to clinicians, and coaches on the approaches adopted using biomechanical/sport performance analysis for an athlete with a disability starting out, to the emerging and elite Paralympian. For completeness of this discourse, the final theme is based on the controversial issues on the role of assisted devices and the inclusion of Paralympians into able-bodied sport is also presented. All combined, this dialogue highlights the intricate relationship between biomechanics and training of individuals with a disability. Furthermore, it illustrates the complexity of modern training of athletes which can only lead to a better appreciation of the performances to be delivered in the London 2012 Paralympic Games

    The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion

    No full text
    This paper was accepted for publication in the journal Journal of Spinal Cord Medicine and the definitive published version is available at http://dx.doi.org/10.1179/2045772314Y.0000000197Objective To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Design Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. Results The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. Conclusions The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV

    Validity and Reliability of an Inertial Sensor for Wheelchair Court Sports Performance

    No full text
    The purpose of the current study was to determine the validity and reliability of an inertial sensor for assessing speed specific to athletes competing in the wheelchair court sports (basketball, rugby, and tennis). A wireless inertial sensor was attached to the axle of a sports wheelchair. Over two separate sessions, the sensor was tested across a range of treadmill speeds reflective of the court sports (1.0 to 6.0 m/s). At each test speed, ten 10-second trials were recorded and were compared with the treadmill (criterion). A further session explored the dynamic validity and reliability of the sensor during a sprinting task on a wheelchair ergometer compared with high-speed video (criterion). During session one, the sensor marginally overestimated speed, whereas during session two these speeds were underestimated slightly. However, systematic bias and absolute random errors never exceeded 0.058 m/s and 0.086 m/s, respectively, across both sessions. The sensor was also shown to be a reliable device with coefficients of variation (% CV) never exceeding 0.9 at any speed. During maximal sprinting, the sensor also provided a valid representation of the peak speeds reached (1.6% CV). Slight random errors in timing led to larger random errors in the detection of deceleration values. The results of this investigation have demonstrated that an inertial sensor developed for sports wheelchair applications provided a valid and reliable assessment of the speeds typically experienced by wheelchair athletes. As such, this device will be a valuable monitoring tool for assessing aspects of linear wheelchair performance
    corecore