1,805 research outputs found

    Electromagnetic showers in a strong magnetic field

    Get PDF
    We present the results concerning the main shower characteristics in a strong magnetic field obtained through shower simulation. The processes of magnetic bremsstrahlung and pair production were taken into account for values of the parameter χ1\chi \gg 1. We compare our simulation results with a recently developed cascade theory in a strong magnetic field.Comment: 11 pages, 9 eps figures, LaTex2e, Iopart.cls, Iopart12.clo, Iopams.st

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    The nature of the highest energy cosmic rays

    Get PDF
    Ultra high energy gamma rays produce electron--positron pairs in interactions on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and the energy of the primary gamma ray is shared by a bunch of lower energy secondaries. These processes reflect the structure of the geomagnetic field and cause experimentally observable effects. The study of these effects with future giant air shower arrays can identify the nature of the highest energy cosmic rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and uuencoded. Subm. to Physical Review

    Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field

    Full text link
    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. We present a new Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected energy in row 1 of Table 3, extended caption of Table

    Lorentz invariance violation in top-down scenarios of ultrahigh energy cosmic ray creation

    Full text link
    The violation of Lorentz invariance (LI) has been invoked in a number of ways to explain issues dealing with ultrahigh energy cosmic ray (UHECR) production and propagation. These treatments, however, have mostly been limited to examples in the proton-neutron system and photon-electron system. In this paper we show how a broader violation of Lorentz invariance would allow for a series of previously forbidden decays to occur, and how that could lead to UHECR primaries being heavy baryonic states or Higgs bosons.Comment: Replaced with heavily revised (see new Abstract) version accepted by Phys. Rev. D. 6 page

    Ultra-High Energy Gamma Rays in Geomagnetic Field and Atmosphere

    Get PDF
    The nature and origin of ultra-high energy (UHE: reffering to > 10^19 eV) cosmic rays are great mysteries in modern astrophysics. The current theories for their explanation include the so-called "top-down" decay scenarios whose main signature is a large ratio of UHE gamma rays to protons. Important step in determining the primary composition at ultra-high energies is the study of air shower development. UHE gamma ray induced showers are affected by the Landau-Pomeranchuk-Migdal (LPM) effect and the geomagnetic cascading process. In this work extensive simulations have been carried out to study the characteristics of air showers from UHE gamma rays. At energies above several times 10^19 eV the shower is affected by geomagnetic cascading rather than by the LPM effect. The properties of the longitudinal development such as average depth of the shower maximum or its fluctuations depend strongly on both primary energy and incident direction. This feature may provide a possible evidence of the UHE gamma ray presence by fluorescence detectors.Comment: 27 pages, 12 figures, submitted to Phys.Rev.

    Ultrahigh Energy Gamma Ray Cascading in the Geomag- netic Field and Its Development in the Atmosphere

    Get PDF
    Abstract Extensive simulations of the longitudinal development of air showers from ultrahigh (UHE) energy gamma rays have been carried out. The shower development is affected by the geomagnetic cascading before entering the atmosphere and by the Landau-Pomeranchuk-Migdal effect in the atmosphere. AIRES code as well as our original code have been used for cascade simulations in the atmosphere. The analysis of the results shows that the longitudinal development of the showers depend strongly on both primary energy and incident direction. This feature may provide reliable conclusions about the photon fraction in the UHE ( > 5 × 10 19 eV) cosmic ray flux

    Lorentz Invariance Violation and the QED Formation Length

    Get PDF
    It was recently suggested that possible small volations of Lorentz invariance could explain the existence of UHECR beyond the GZK cutoff and the observations of multi-TeV gamma-rays from Mkn 501. Our analysis of Lorentz-violating kinematics shows that in addition to the modified threshold conditions solving cosmic ray puzzles we should expect a strong suppression of electromagnetic processes like bremsstrahlung and pair creation. This leads to drastic effects in electron-photon cascade development in the atmosphere and in detectors.Comment: 9 pages, some new comments and references adde
    corecore