69 research outputs found

    Laboratory von H\'amos X-ray Spectroscopy for Routine Sample Characterization

    Get PDF
    High energy resolution, hard X-ray spectroscopies are powerful element selective probes of the electronic and local structure of matter, with diverse applications in chemistry, physics, biology and materials science. The routine application of these techniques is hindered by the complicated and slow access to synchrotron radiation facilities. Here we propose a new, economic, easily operated laboratory high resolution von H\'amos type X-ray spectrometer, which offers rapid transmission experiments for X-ray absorption, and is also capable of recording X-ray emission spectra. The use of a cylindrical analyzer crystal and a position sensitive detector enabled us to build a maintenance free, flexible setup with low operational costs, while delivering synchrotron grade signal to noise measurements in reasonable acquisition times. We demonstrate the proof of principle and give examples for both measurement types. Finally, tracking of a several day long chemical transformation, a case better suited for laboratory than synchrotron investigation, is also presented

    Angular dependence of core hole screening in LiCoO2: A DFT+U calculation of the oxygen and cobalt K-edge x-ray absorption spectra

    Full text link
    Angular dependent core-hole screening effects have been found in the cobalt K-edge x-ray absorption spectrum of LiCoO2, using high-resolution data and parameter-free GGA+U calculations. The Co 1s core-hole on the absorber causes strong local attraction. The core-hole screening on the nearest neighbours cobalt induces a 2 eV shift in the density of states with respect to the on-site 1s-3d transitions, as detected in the Co K pre-edge spectrum. Our DFT+U calculations reveal that the off-site screening is different in the out-of-plane direction, where a 3 eV shift is visible in both calculations and experiment. The detailed analysis of the inclusion of the core-hole potential and the Hubbard parameter U shows that the core-hole is essential for the off-site screening, while U improves the description of the angular dependent screening effects. In the case of oxygen K-edge, both the core-hole potential and the Hubbard parameter improve the relative positions of the spectral features

    Determining the Quintet Lifetimes in Side-ring Substituted [Fe(terpy)2]2+ Complexes

    Get PDF
    We previously studied the effect of 4' substitution in iron(II)-bis-terpyridine complexes, showing that the photoexcited high-spin quintet-state is stabilized by electron-donating substituents. In this paper we explore the effects of electron-donating ( X = NH2 , Cl ) and withdrawing ( X = NO2 ) substituents in the 5,5" positions on the stability and lifetime of the quintet-state. We used a simple densitiy-functional theory (DFT) based method that had been proven fairly accurate in the case of 4' substitution to estimate the energy barrier of the quintet-singlet transition and thereby predict the quintet state lifetime. We synthetized the complexes and used ultrafast transient optical absorption spectroscopy to experimentally determine the quintet lifetimes, in order to test the applicability of these quantum-chemistry based predictive methods for these side-ring substitution cases. UV-Visible spectra of the complexes have shown that the metal-to-li­gand charge transfer (MLCT) and ligand-localized transitions of these complexes change according to the previous observations. We have shown that in the 5,5" positions, electron withdrawing groups stabilize the quintet state, while donating groups destabilize it. This is in stark contrast to the effects previously observed for the 4' case, and indicates that unlike the latter case, the simple concept of inductive and mesomeric effects may not be adequate to describe the changes due to 5,5" substitution, warranting further study of the area

    Screening in YBCO at large wave vectors

    Full text link
    We present experimental inelastic x-ray scattering (IXS) and ab initio time-dependent density-functional-theory (TDDFT) studies of YBa2Cu3O7-{\delta}. The response of the low-lying Ba 5p and Y 4p core electrons is shown to interact strongly with the Cu 3d and O 2p excitations, with important consequences on screening. The agreement between IXS and TDDFT results is excellent, apart from a new type of excitations, mainly related to loosely bound Ba electrons and significantly affected by correlations. This points to correlation mechanisms not fully described by TDDFT that might have a role in giving rise to antiscreening.Comment: 6 pages, 3 figure

    On the microscopic origin of the magneto-electronic phase separation in Sr doped LaCoO3

    Full text link
    The nanoscopic magneto-electronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by M\"ossbauer spectroscopy in the studied doping range of 0.05 <= x <= 0.25 both at room-temperature as well as in the low temperature magnetic phase. Extended with current synchrotron based X-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases as well as the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content

    Metal-ligand interplay in strongly-correlated oxides: a parametrized phase diagram for pressure induced spin transitions

    Full text link
    We investigate the magnetic properties of archetypal transition-metal oxides MnO, FeO, CoO and NiO under very high pressure by x-ray emission spectroscopy at the K\beta line. We observe a strong modification of the magnetism in the megabar range in all the samples except NiO. The results are analyzed within a multiplet approach including charge-transfer effects. The pressure dependence of the emission line is well accounted for by changes of the ligand field acting on the d electrons and allows us to extract parameters like local d-hybridization strength, O-2p bandwidth and ionic crystal field across the magnetic transition. This approach allows a first-hand insight into the mechanism of the pressure induced spin transition.Comment: 5 pages, 3 figure

    Probing Spin-Vibronic Dynamics Using Femtosecond X-ray Spectroscopy

    Get PDF
    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the devel- opment of X-ray Free Electrons Lasers (X-FELs) and are opening new opportunities for direct probing the correlated evolution of the nuclei, the electronic and spin degrees of freedom on the femtosecond timescale. In this contribution we use excited state wavepacket dynamics of the photoexcited decay of a new Fe(II) complex, [Fe(bmip)2]2+ (bmip=2,6-bis(3-methyl-imidazole- 1-ylidine)pyridine), to simulate the experimental observables associated with femtosecond Fe K- edge X-ray absorption near-edge structure (XANES) and X-ray emission (XES) spectra. We show how the evolution of the nuclear wavepacket is translated into the experimental observable and the sensitivity of these approaches for following excited state dynamics

    Temperature and pressure-induced spin-state transitions in LaCoO3

    Full text link
    We report the continuous variation of the spin moment of cobalt in LaCoO3 across its temperature and pressure-induced spin transitions evidenced with K\beta emission spectra. The first thermal transition is best described by a transition to an orbitally nondegenerate intermediate spin (S=1) state. In parallel, continuous redistribution of the 3d electrons is also indicated by partial fluorescence yield X-ray absorption spectra. At high pressure, our study confirms that the material becomes low spin between 40 and 70 kbar at room temperature
    corecore