449 research outputs found

    D-instantons, Strings and M-theory

    Full text link
    The R^4 terms in the effective action for M-theory compactified on a two-torus are motivated by combining one-loop results in type II superstring theories with the Sl(2,Z) duality symmetry. The conjectured expression reproduces precisely the tree-level and one-loop R^4 terms in the effective action of the type II string theories compactified on a circle, together with the expected infinite sum of instanton corrections. This conjecture implies that the R^4 terms in ten-dimensional string type II theories receive no perturbative corrections beyond one loop and there are also no non-perturbative corrections in the ten-dimensional IIA theory. Furthermore, the eleven-dimensional M-theory limit exists, in which there is an R^4 term that originates entirely from the one-loop contribution in the type IIA theory and is related by supersymmetry to the eleven-form C^{(3)}R^4. The generalization to compactification on T^3 as well as implications for non-renormalization theorems in D-string and D-particle interactions are briefly discussed.Comment: harvmac (b) 17 pages. v4: Some formulae corrected. Dimensions corrected for eleven-dimensional expression

    Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus

    Full text link
    The coefficients of the higher-derivative terms in the low energy expansion of genus-one graviton Type II superstring scattering amplitudes are determined by integrating sums of non-holomorphic modular functions over the complex structure modulus of a torus. In the case of the four-graviton amplitude, each of these modular functions is a multiple sum associated with a Feynman diagram for a free massless scalar field on the torus. The lines in each diagram join pairs of vertex insertion points and the number of lines defines its weight ww, which corresponds to its order in the low energy expansion. Previous results concerning the low energy expansion of the genus-one four-graviton amplitude led to a number of conjectured relations between modular functions of a given ww, but different numbers of loops ≤w−1\le w-1. In this paper we shall prove the simplest of these conjectured relations, namely the one that arises at weight w=4w=4 and expresses the three-loop modular function D4D_4 in terms of modular functions with one and two loops. As a byproduct, we prove three intriguing new holomorphic modular identities.Comment: 38 pages, 9 figures, in version 2: Appendix D added and corrections made in section

    Modular properties of two-loop maximal supergravity and connections with string theory

    Get PDF
    The low-momentum expansion of the two-loop four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a circle and a two-torus is considered up to terms of order S^6R^4 (where S is a Mandelstam invariant and R is the linearized Weyl curvature). In the case of the toroidal compactification the coefficient of each term in the low energy expansion is generically a sum of a number of SL(2,Z)-invariant functions of the complex structure of the torus. Each such function satisfies a separate Poisson equation on moduli space with particular source terms that are bilinear in coefficients of lower order terms, consistent with qualitative arguments based on supersymmetry. Comparison is made with the low-energy expansion of type II string theories in ten and nine dimensions. Although the detailed behaviour of the string amplitude is not generally expected to be reproduced by supergravity perturbation theory to all orders, for the terms considered here we find agreement with direct results from string perturbation theory. These results point to a fascinating pattern of interrelated Poisson equations for the IIB coefficients at higher orders in the momentum expansion which may have a significance beyond the particular methods by which they were motivated.Comment: 79 pages, 4 figures. Latex format. v2: Small corrections made, version to appear in JHE

    Small representations, string instantons, and Fourier modes of Eisenstein series (with an appendix by D. Ciubotaru and P. Trapa)

    Get PDF
    This paper concerns some novel features of maximal parabolic Eisenstein series at certain special values of their analytic parameter s. These series arise as coefficients in the R4 and D4R4 interactions in the low energy expansion of scattering amplitudes in maximally supersymmetric string theory reduced to D=10-d dimensions on a torus T^d, d<8. For each d these amplitudes are automorphic functions on the rank d+1 symmetry group E_d+1. Of particular significance is the orbit content of the Fourier modes of these series when expanded in three different parabolic subgroups, corresponding to certain limits of string theory. This is of interest in the classification of a variety of instantons that correspond to minimal or next-to-minimal BPS orbits. In the limit of decompactification from D to D+1 dimensions many such instantons are related to charged 1/2-BPS or 1/4-BPS black holes with euclidean world-lines wrapped around the large dimension. In a different limit the instantons give nonperturbative corrections to string perturbation theory, while in a third limit they describe nonperturbative contributions in eleven-dimensional supergravity. A proof is given that these three distinct Fourier expansions have certain vanishing coefficients that are expected from string theory. In particular, the Eisenstein series for these special values of s have markedly fewer Fourier coefficients than typical ones. The corresponding mathematics involves showing that the wavefront sets of the Eisenstein series are supported on only certain coadjoint nilpotent orbits - just the minimal and trivial orbits in the 1/2-BPS case, and just the next-to-minimal, minimal and trivial orbits in the 1/4-BPS case. Thus as a byproduct we demonstrate that the next-to-minimal representations occur automorphically for E6, E7, and E8, and hence the first two nontrivial low energy coefficients are exotic theta-functions.Comment: v3: 127 pp. Minor changes. Final version to appear in the Special Issue in honor of Professor Steve Ralli

    Modular Graph Functions

    Full text link
    In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to as modular graph functions, arise, for example, in the low energy expansion of genus-one Type II superstring amplitudes. We here introduce a class of single-valued elliptic multiple polylogarithms, which are defined as elliptic functions associated with Feynman graphs with vanishing external momenta at all but two vertices. These functions depend on a coordinate, ζ\zeta, on the elliptic curve and reduce to modular graph functions when ζ\zeta is set equal to 11. We demonstrate that these single-valued elliptic multiple polylogarithms are linear combinations of multiple polylogarithms, and that modular graph functions are sums of single-valued elliptic multiple polylogarithms evaluated at the identity of the elliptic curve, in both cases with rational coefficients. This insight suggests the many interrelations between modular graph functions (a few of which were established in earlier papers) may be obtained as a consequence of identities involving multiple polylogarithms, and explains an earlier observation that the coefficients of the Laurent polynomial at the cusp are given by rational numbers times single-valued multiple zeta values.Comment: 42 pages, significant clarifications added in section 5, minor typos corrected, and references added in version

    Eisenstein series for higher-rank groups and string theory amplitudes

    Full text link
    Scattering amplitudes of superstring theory are strongly constrained by the requirement that they be invariant under dualities generated by discrete subgroups, E_n(Z), of simply-laced Lie groups in the E_n series (n<= 8). In particular, expanding the four-supergraviton amplitude at low energy gives a series of higher derivative corrections to Einstein's theory, with coefficients that are automorphic functions with a rich dependence on the moduli. Boundary conditions supplied by string and supergravity perturbation theory, together with a chain of relations between successive groups in the E_n series, constrain the constant terms of these coefficients in three distinct parabolic subgroups. Using this information we are able to determine the expressions for the first two higher derivative interactions (which are BPS-protected) in terms of specific Eisenstein series. Further, we determine key features of the coefficient of the third term in the low energy expansion of the four-supergraviton amplitude (which is also BPS-protected) in the E_8 case. This is an automorphic function that satisfies an inhomogeneous Laplace equation and has constant terms in certain parabolic subgroups that contain information about all the preceding terms.Comment: Latex. 38 pages. 1 figure. v2: minor changes and clarifications. v3: minor corrections, version to appear in Communications in Number Theory and Physics. v4: corrections to table

    Minimal Basis for Gauge Theory Amplitudes

    Full text link
    Identities based on monodromy for integrations in string theory are used to derive relations between different color ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)! amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.Comment: v2: typos corrected, some rephrasing of the general discussion. Captions to figures added. Version to appear in PRL. 4 pages, 5 figure

    Automorphic properties of low energy string amplitudes in various dimensions

    Get PDF
    This paper explores the moduli-dependent coefficients of higher derivative interactions that appear in the low-energy expansion of the four-graviton amplitude of maximally supersymmetric string theory compactified on a d-torus. These automorphic functions are determined for terms up to order D^6R^4 and various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various logarithms, although the string theory expressions are finite. This analysis includes intriguing representations of SL(d) and SO(d,d) Eisenstein series in terms of toroidally compactified one and two-loop string and supergravity amplitudes.Comment: 80 pages. 1 figure. v2:Typos corrected, footnotes amended and small clarifications. v3: minor corrections. Version to appear in Phys Rev
    • …
    corecore