37 research outputs found

    Deoxynivalenol : a major player in the multifaceted response of Fusarium to its environment

    Get PDF
    The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations

    Detached leaf in vitro model for masked mycotoxin biosynthesis and subsequent analysis of unknown conjugates

    Get PDF
    The manuscript details the development of an in vitro model plant system using detached leaves because there is a need for biosynthetic methods for the production and isolation of masked mycotoxins. This detached leaf in vitro model was firstly applied to deoxynivalenol with satisfying results. The biosynthesis of deoxynivalenol-3-glucoside was confirmed using its respective commercially available reference standard. Secondly, the detached leaf in vitro model was applied to T-2 toxin. Mono- and tri-glucoside derivatives of T-2 toxin and HT-2 toxin, T-2-(3)-glucoside, T-2-(3)-triglucoside and HT-2-(3)-glucoside were identified and characterised using Orbitrap high-resolution mass spectrometry. This is the first report on a triglucoside of T-2 toxin. The discovery of new masked forms implies the importance of the development of analytical methods for their detection, the constitution of toxicity studies, and proving the relevance of their presence in the food and feed chain

    Genetic divergence and chemotype diversity in the fusarium head blight pathogen Fusarium poae

    Get PDF
    Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6. To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae

    Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA

    Get PDF
    Purpose: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. Methods: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Results: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0–1.00) and 85.9% (75.4–92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20–2.92) or receiving a written TLD (HR 2.32, CI 1.11–4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Conclusion: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life

    The importance of non-penetrated papillae formation in the resistance response of triticale to powdery mildew (Blumeria graminis)

    No full text
    Triticale is the intergeneric hybrid between wheat and rye. With the expansion of the triticale growing area, powdery mildew has emerged and become a significant disease on this new host. Recent research demonstrated that this new' powdery mildew on triticale has emerged through a host range expansion of powdery mildew of wheat. Moreover, isolates sampled from triticale still infect their previous host, wheat, but isolates sampled from wheat hardly infect triticale. Race-specific and adult-plant resistance have been identified in triticale cultivars. The main objective of this study was to characterize the cellular basis of powdery mildew resistance in triticale. Commonalities with resistance responses in other cereals such as wheat, barley and oat are discussed. A detailed comparative histological study of various resistance responses during cross-inoculation of either virulent or avirulent wheat and triticale isolates on both hosts was carried out. The present data provide evidence that for incompatible interactions, the formation of non-penetrated papillae is the predominant resistance response, while the hypersensitive response (HR) acts as a second line of defence, to cut the fungus off from nutrients, if penetration resistance fails. It is not clear yet what causes the slower growth and reduced colony size of triticale isolates when inoculated on wheat. Possibly, post-penetration resistance mechanisms, other than HR, are switched on during these (semi-) compatible interactions. Molecular studies on gene expression and gene function of defence-related genes might reveal further insights into the genetic basis of these resistance responses

    Evaluation of resistance to powdery mildew in triticale seedlings and adult plants

    No full text
    Triticale (xTriticosecale) is the intergeneric hybrid between the female parent wheat and the male parent rye. With the expansion of the triticale growing area, powdery mildew emerged on this new host and has become a significant disease on triticale. Recent research demonstrated that this "new" powdery mildew on triticale has emerged through a host range expansion of powdery mildew of wheat. Moreover, this expansion occurred recently and multiple times at different locations in Europe. An effective and environmentally sensitive approach to controlling powdery mildew involves breeding crop plants for resistance. The main goal of this study was to identify the presence of powdery mildew resistance in commercial triticale cultivars. First, the avirulence (AVR) genes and gene complexity carried by this new powdery mildew population on triticale were characterized. Virulence was identified for all the resistance genes evaluated in the present study, and virulence frequencies higher than 50% were recorded on the genes Pm3f, Pm5b, Pm6, Pm7, Pm8, and Pm17. Using molecular markers, the presence of resistance genes Pm3f and Pm17 was identified in certain triticale cultivars. The triticale cultivars were also evaluated for the presence of quantitative resistance at adult plant growth stages in a 2-year field experiment. Despite the high disease pressure, cultivars highly resistant at the adult-plant growth stages were identified. Because 'Grenado' also showed effective race-specific resistance, this cultivar could be of high value for breeding for durable resistance to powdery mildew. Altogether, this study reveals valuable information on the presence of powdery mildew resistance in commercial triticale cultivars, which can be used in breeding programs in triticale. Additionally, this study underscores the need to broaden the base of powdery mildew resistance in triticale through introgression and deployment of new sources of mildew resistance, including quantitative resistance
    corecore