79 research outputs found

    Critical illness-induced bone loss is related to deficient autophagy and histone hypomethylation

    Get PDF
    BACKGROUND Survivors of critical illness are at increased risk of fractures. This may be due to increased osteoclast formation during critical illness, leading to trabecular bone loss. Such bone loss has also been observed in Paget's disease, and has been related to deficient autophagy. Deficient autophagy has also been documented in vital organs and skeletal muscle of critically ill patients. The objective of this study was to investigate whether deficient autophagy can be linked to critical illness-induced bone loss. METHODS Osteoclasts grown in vitro and their precursor cells isolated from peripheral blood of critically ill patients and from matched healthy volunteers were analysed for the expression of autophagy genes (SQSTM1, Atg3 and Atg7), and proteins (p62, Atg-5, and microtubule-associated protein light chain 3-II (LC3-II)) and for autophagy and epigenetic signalling factors via PCR arrays and were treated with the autophagy inducer rapamycin. The effect of rapamycin was also investigated at the tissue level in an in vivo rabbit model of critical illness. RESULTS Many more osteoclasts formed in vitro from the blood precursor cells isolated from critically ill patients, which accumulated p62, and displayed reduced expression of Atg5, Atg7, and LC3-II compared to healthy controls, suggesting deficient autophagy, whilst addition of rapamycin reduced osteoclast formation. PCR arrays revealed a down-regulation of histone methyltransferases coupled with an up-regulation of negative regulators of autophagy. Critically ill rabbits displayed a reduction in trabecular and cortical bone, which was rescued with rapamycin. CONCLUSIONS Deficient autophagy in osteoclasts and their blood precursor cells at least partially explained aberrant osteoclast formation during critical illness and was linked to global histone hypomethylation. Treatment with the autophagy activator Rapamycin reduced patient osteoclast formation in vitro and reduced the amount of bone loss in critically ill rabbits in vivo. These findings may help to develop novel therapeutic targets to prevent critical illness-induced bone loss

    QCD in the nuclear medium and effects due to Cherenkov gluons

    Full text link
    The equations of in-medium gluodynamics are proposed. Their classical lowest order solution is explicitly shown for a color charge moving with constant speed. For nuclear permittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The values of the real and imaginary parts of the nuclear permittivity are obtained from the fits to experimental data on the double-humped structure around the away-side jet obtained at RHIC. The dispersion of the nuclear permittivity is predicted by comparing the RHIC, SPS and cosmic ray data. This is important for LHC experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton mass spectra near rho-meson, observed in the SPS experiment with excess in the low-mass wing of the resonance. This feature is predicted to be common for all resonances. The "color rainbow" quantum effect might appear according to higher order terms of in-medium QCD if the nuclear permittivity depends on color.Comment: 29 p., 4 figs; for "Phys. Atom. Nucl." volume dedicated to 80th birthday of L.B. Okun; minor corrections on pp. 11 and 13 in v

    Secondary Prevention Through Cardiac Rehabilitation: Position Paper of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology

    Get PDF
    The purpose of this statement is to provide specific recommendations in regard to evaluation and intervention in each of the core components of cardiac rehabilitation (CR) to assist CR staff in the design and development of their programmes; the statement should also assist health care providers, insurers, policy makers and consumers in the recognition of the comprehensive nature of such programmes. Those charged with responsibility for secondary prevention of cardiovascular disease, whether at European, at national or at individual centre level, need to consider where and how structured programmes of CR can be delivered to the large constituency of patients now considered eligible for C

    Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile:Review, Synthesis and Recommendations

    Get PDF
    There is a direct relationship between chronically elevated cholesterol levels (dyslipidaemia) and coronary heart disease. A reduction in total cholesterol is considered the gold standard in preventative cardiovascular medicine. Exercise has been shown to have positive impacts on the pathogenesis, symptomatology and physical fitness of individuals with dyslipidaemia, and to reduce cholesterol levels. The optimal mode, frequency, intensity and duration of exercise for improvement of cholesterol levels are, however, yet to be identified. This review assesses the evidence from 13 published investigations and two review articles that have addressed the effects of aerobic exercise, resistance training and combined aerobic and resistance training on cholesterol levels and the lipid profile. The data included in this review confirm the beneficial effects of regular activity on cholesterol levels and describe the impacts of differing volumes and intensities of exercise upon different types of cholesterol. Evidence-based exercise recommendations are presented, aimed at facilitating the prescription and delivery of interventions in order to optimize cholesterol levels

    Cardiac rehabilitation in Austria: long term health-related quality of life outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of cardiac rehabilitation programs is not only to prolong life but also to improve physical functioning, symptoms, well-being, and health-related quality of life (HRQL). The aim of this study was to document the long-term effect of a 1-month inpatient cardiac rehabilitation intervention on HRQL in Austria.</p> <p>Methods</p> <p>Patients (N = 487, 64.7% male, age 60.9 ± 12.5 SD years) after myocardial infarction, with or without percutaneous interventions, coronary artery bypass grafting or valve surgery underwent inpatient cardiac rehabilitation and were included in this long-term observational study (two years follow-up). HRQL was measured with both the MacNew Heart Disease Quality of Life Instrument [MacNew] and EuroQoL-5D [EQ-5D].</p> <p>Results</p> <p>All MacNew scale scores improved significantly (p < 0.001) and exceeded the minimal important difference (0.5 MacNew points) by the end of rehabilitation. Although all MacNew scale scores deteriorated significantly over the two year follow-up period (p < .001), all MacNew scale scores still remained significantly higher than the pre-rehabilitation values. The mean improvement after two years in the MacNew social scale exceeded the minimal important difference while MacNew scale scores greater than the minimal important difference were reported by 40-49% of the patients.</p> <p>Two years after rehabilitation the mean improvement in the EQ-5D Visual Analogue Scale score was not significant with no significant change in the proportion of patients reporting problems at this time.</p> <p>Conclusion</p> <p>These findings provide a first indication that two years following inpatient cardiac rehabilitation in Austria, the long-term improvements in HRQL are statistically significant and clinically relevant for almost 50% of the patients. Future controlled randomized trials comparing different cardiac rehabilitation programs are needed.</p

    Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

    Full text link

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Epigenetic activities of flavonoids in the prevention and treatment of cancer

    Get PDF
    • …
    corecore