3 research outputs found

    Isabelle Modelchecking for insider threats

    Get PDF
    The Isabelle Insider framework formalises the technique of social explanation for modeling and analysing Insider threats in infrastructures including physical and logical aspects. However, the abstract Isabelle models need some refinement to provide sufficient detail to explore attacks constructively and understand how the attacker proceeds. The introduction of mutable states into the model leads us to use the concepts of Modelchecking within Isabelle. Isabelle can simply accommodate classical CTL type Modelchecking. We integrate CTL Modelchecking into the Isabelle Insider framework. A running example of an IoT attack on privacy motivates the method throughout and illustrates how the enhanced framework fully supports realistic modeling and analysis of IoT Insiders

    Altered functional brain connectivity in patients with visually induced dizziness

    No full text
    BACKGROUND: Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visually induced dizziness (VID). These patients therefore experience dizziness, discomfort, disorientation and postural unsteadiness. The underlying pathophysiology of VID is still poorly understood. OBJECTIVE: The aim of the current explorative study was to gain a first insight in the underlying neural aspects of VID. METHODS: We included 10 VID patients and 10 healthy matched controls, all of which underwent a resting state fMRI scan session. Changes in functional connectivity were explored by means of the intrinsic connectivity contrast (ICC). Seed-based analysis was subsequently performed in visual and vestibular seeds. RESULTS: We found a decreased functional connectivity in the right central operculum (superior temporal gyrus), as well as increased functional connectivity in the occipital pole in VID patients as compared to controls in a hypothesis-free analysis. A weaker functional connectivity between the thalamus and most of the right putamen was measured in VID patients in comparison to controls in a seed-based analysis. Furthermore, also by means of a seed-based analysis, a decreased functional connectivity between the visual associative area and the left parahippocampal gyrus was found in VID patients. Additionally, we found increased functional connectivity between thalamus and occipital and cerebellar areas in the VID patients, as well as between the associative visual cortex and both middle frontal gyrus and precuneus. CONCLUSIONS: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.publisher: Elsevier articletitle: Altered functional brain connectivity in patients with visually induced dizziness journaltitle: NeuroImage: Clinical articlelink: http://dx.doi.org/10.1016/j.nicl.2017.02.020 content_type: article copyright: © 2017 The Authors. Published by Elsevier Inc.status: publishe
    corecore