162 research outputs found

    An overview of the use of extremity dosemeters in some European countries for medical applications

    Get PDF
    Some medical applications are associated with high doses to the extremities of the staff exposed to ionising radiation. At workplaces in nuclear medicine, interventional radiology, interventional cardiology and brachytherapy, extremities can be the limiting organs as far as regulatory dose limits for workers are concerned. However, although the need for routine extremity monitoring is clear for these applications, no data about the status of routine extremity monitoring reported by different countries was collected and analysed so far, at least at a European level. In this article, data collected from seven European countries are presented. They are compared with extremity doses extracted from dedicated studies published in the literature which were reviewed in a previous publication. The analysis shows that dedicated studies lead to extremity doses significantly higher than the reported doses, suggesting that either the most exposed workers are not monitored, or the dosemeters are not routinely worn or not worn at appropriate position

    An overview on extremity dosimetry in medical applications

    Get PDF
    Some activities of EURADOS Working Group 9 (WG9) are presently funded by the European Commission (CONRAD project). The objective of WG9 is to promote and co-ordinate research activities for the assessment of occupational exposures to staff at workplaces in interventional radiology (IR) and nuclear medicine. For some of these applications, the skin of the fingers is the limiting organ for individual monitoring of external radiation. Therefore, sub-group 1 of WG9 deals with the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in a medical environment together with the difficulties in measuring a local dose that is representative for the maximum skin dose, usually with one single detector, makes it difficult to perform accurate extremity dosimetry. Sub-group 1 worked out a thorough literature review on extremity dosimetry issues in diagnostic and therapeutic nuclear medicine and positron emission tomography, interventional radiology and interventional cardiology and brachytherapy. Some studies showed that the annual dose limits could be exceeded if the required protection measures are not taken, especially in nuclear medicine. The continuous progress in new applications and techniques requires an important effort in radiation protection and trainin

    EURADOS IC2012N: EURADOS 2012 intercomparison for whole-body neutron dosimetry

    Get PDF
    The European Radiation Dosimetry Group (EURADOS) IC2012n intercomparison for neutron dosemeters intended to measure personal dose equivalent, Hp(10), was performed in 2012. A total of 31 participants (27 individual monitoring services from Europe, 2 from Japan, 1 from Israel and 1 from USA) registered with 34 dosimetry systems. Participation was restricted to passive or active neutron dosemeters routinely used in individual monitoring of radiation workers. The dosimetry systems were based on thermoluminescence, polyallyldiglycol carbonate, optically stimulated luminescence, fission track detection and silicon diodes (electronic devices). The irradiation tests were chosen to provide the participants with useful information on their dosimetry systems, i.e. linearity, reproducibility, responses for different energies and angles and to simulated workplace fields. The paper will report and discuss the first analysis of the results of the EURADOS IC2012n intercompariso

    Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields

    Get PDF
    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente

    Radioluminescence results from an Al2O3:C fiber prototype: 6 MV medical beam

    Get PDF
    The Investigations of this article focus on the response of an Al2O3:C radioluminescence (RL) prototype for medical dosimetry in a 6 MV photon beam. The prototype can be configured using two types of detectors coupled to fiber-optic cables - single crystal (1 x 1 x 2 mm(3)) and droplets (in two grain sizes, 38 and 4 mu m, molded in r =0.5 mm,1= 200 mu m). By using the appropriate filters in addition to time gating it is possible to remove disturbance present during irradiation: the stem effect. Pre -irradiation of the dosimeters to a dose of 300 Gy made the memory effects in Al2O3:C negligible, so as to not impair the dosimetric properties of the system. The key findings are that the system is suitable for small field beam dosimetry, while giving overall good dose response in other features (i.e., beam profile, dose rate - FF and FFF modes). The results show that our prototype can be used for real time dose rate assessment in medical photon dosimetry without many correction factors. The 41 mu m RL measurement results are in excellent agreement (i.e. below 1%) with the dose delivered according to standard beam data

    Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discusse

    Extremity ring dosimetry intercomparison in reference and workplace fields

    Get PDF
    An intercomparison of ring dosemeters has been organised with the aim of assessing the technical capabilities of available extremity dosemeters and focusing on their performance at clinical workplaces with potentially high extremity doses. Twenty-four services from 16 countries participated in the intercomparison. The dosemeters were exposed to reference photon (137Cs) and beta (147Pm, 85Kr and 90Sr/90Y) fields together with fields representing realistic exposure situations in interventional radiology (direct and scattered radiation) and nuclear medicine (99 mTc and 18F). It has been found that most dosemeters provided satisfactory measurements of Hp(0.07) for photon radiation, both in reference and realistic fields. However, only four dosemeters fulfilled the established requirements for all radiation qualities. The main difficulties were found for the measurement of low-energy beta radiation. Finally, the results also showed a general under-response of detectors to 18F, which was attributed to the difficulties of the dosimetric systems to measure the positron contribution to the dos

    An overview on extremity dosimetry in medical applications

    Get PDF
    Some activities of EURADOS Working Group 9 (WG9) are presently funded by the European Commission (CONRAD project). The objective of WG9 is to promote and co-ordinate research activities for the assessment of occupational exposures to staff at workplaces in interventional radiology (IR) and nuclear medicine. For some of these applications, the skin of the fingers is the limiting organ for individual monitoring of external radiation. Therefore, sub-group 1 of WG9 deals with the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in a medical environment together with the difficulties in measuring a local dose that is representative for the maximum skin dose, usually with one single detector, makes it difficult to perform accurate extremity dosimetry. Sub-group 1 worked out a thorough literature review on extremity dosimetry issues in diagnostic and therapeutic nuclear medicine and positron emission tomography, interventional radiology and interventional cardiology and brachytherapy. Some studies showed that the annual dose limits could be exceeded if the required protection measures are not taken, especially in nuclear medicine. The continuous progress in new applications and techniques requires an important effort in radiation protection and training

    Extremity exposure in nuclear medicine: preliminary results of a European study

    Get PDF
    The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: 99mTc and 18F. For therapeutic treatments, Zevalin® and DOTATOC (both labelled with 90Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin dose

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations

    Get PDF
    The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter result
    corecore