381 research outputs found

    ICP-MS Measurement of 11B/10B Isotope Ratios in Grapevine Leaves and the Investigation of Possible Boron Isotope Fractionation in Grapevine Plants

    Get PDF
    The correlation between the 11B/10B ratio in grapevine leaves and that in the growth medium was establishedin a series of hydroponic experiments with grapevine cuttings for different cultivar/rootstocks combinations.The hydroponic growth medium was alternately spiked with boric acid containing B with natural isotopecomposition and B enriched in 10B, so as to vary the 11B/10B ratio. B isotope ratios in grapevine leaves weredetermined by quadrupole-based ICP-MS after digestion and complete matrix removal through microwavedigestion and isolation of matrix-free B species using ion exchange separation. It was found that the B isotoperatios in the leaves were not identical to those in the growth medium, but that a change in the ratio in the growthmedium induced a similar change in the leaves. For a particular cultivar/rootstock combination, a characteristicB isotope ratio was found that was different from the ratio in a group of plants with a different cultivar/rootstockcombination

    To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)

    Get PDF
    The use of an internal standard to correct for potential matrix effects and instrument instability is common practice in ICP-MS. However, with the introduction of a new generation of ICP-MS instrumentation with a tandem mass spectrometry configuration (ICP-MS/MS), the use of chemical resolution in a mass-shift approach has become much more popular, suggesting that the appropriate selection of an internal standard needs revision. In this particular case, it needs to be decided whether the internal standard should also be subjected to a mass-shift or can simply be monitored on-mass ("to shift, or not to shift"). In this work, 17 elements covering a wide range of masses (24-205 amu) and ionization energies (3.89-9.39 eV) were measured via on-mass and/or mass-shift strategies, and the corresponding atomic ions and reaction product ions were monitored during various systematic experiments. For mass-shifting, an NH3/He gas mixture was used to obtain NH3-based reaction product ions (cluster formation). Product ion scanning (PIS) was used for assessing the differences in reactivity between the different analytes and for the identification of the best suited reaction product ions. It was found that the use of chemical resolution can significantly affect the short-term signal stability and that ion signals measured on-mass are not affected in the same way as those measured mass-shifted. Variations affecting the signal intensities of both atomic and reaction product ions can be attributed to the ion-molecule chemistry occurring within the collision/reaction cell and were found to be related with some degree of initial instability in the cell and differences in reactivity. The use of a sufficiently long stabilization time, however, avoids or at least mitigates such differences in the behavior between signals monitored on-mass and after mass-shifting, respectively. Furthermore, the introduction of cell disturbances, such as those generated after quickly switching between different sets of operating conditions in a multi-tune method, revealed significant differences in signal behavior between atomic and reaction product ions, potentially hampering the use of an internal standard monitored on-mass when the analysis is based on an analyte monitored after mass-shifting. However, the use of a reasonable waiting time again greatly mitigates such differences, with the duration of this stabilization time depending on the magnitude of the cell disturbances (e.g., switch between vented and pressurized mode or only between pressurized modes using different gas flow rates). In addition, also the effect of varying different instrument settings (plasma power, torch position, and gas and liquid flow rates) was evaluated, but no remarkable differences were found between signals monitored on-mass and those mass-shifted. Interestingly, a statistical evaluation of the influence of the different settings on the signal intensities of all ions monitored did not reveal the a priori important role of some properties traditionally suggested for adequate selection of analyte/internal standard pairs, such as mass number or ionization energy, as also suggested in other recent studies. © The Royal Society of Chemistry

    A simple dilute-and-shoot approach for the determination of ultra-trace levels of arsenic in biological fluids via ICP-MS using CH3F/He as a reaction gas

    Get PDF
    The performance of a mixture of CH3F/He (1/9) as a reaction gas for the determination of As in biological fluids using a quadrupole ICP-MS instrument has been explored. A simple (dilute-and-shoot) interference-free method has been developed to quantify As concentrations at trace and ultra-trace levels in matrices with a high Cl content. As+ reacts with CH3F (through CH3F addition, followed by HF elimination) with high efficiency forming AsCH2 + as the primary reaction product, which can be monitored at a mass-to-charge ratio of 89, free from the Cl-based interferents (e.g., 40Ar35Cl+ and 40Ca35Cl+) that hamper the monitoring of 75As+. Matrix effects are overcome by the use of Te as an internal standard and the addition of 3% v/v ethanol to all samples and calibration standard solutions. The method presented was validated by analysing a set of reference materials (blood, serum and urine) and by assessing As recovery from a set of real blood samples. With this method, the limit of detection was calculated to be 0.8 ng L-1 As, favourably comparable to the vast majority of values reported in the literature, even with those obtained using more sophisticated sector-field instrumentation

    Integrable maps in 4D and modified Volterra lattices

    Full text link
    In recent work, we presented the construction of a family of difference equations associated with the Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus gg. As well as proving that each such discrete system is an integrable map in the Liouville sense, we also showed it to be an algebraic completely integrable system. In the discrete setting, the latter means that the generic level set of the invariants is an affine part of an abelian variety, in this case the Jacobian of the hyperelliptic curve, and each iteration of the map corresponds to a translation by a fixed vector on the Jacobian. In addition, we demonstrated that, by combining the discrete integrable dynamics with the flow of one of the commuting Hamiltonian vector fields, these maps provide genus gg algebro-geometric solutions of the infinite Volterra lattice, which justified naming them Volterra maps, denoted Vg{\cal V}_g. The original motivation behind our work was the fact that, in the particular case g=2g=2, we could recover an example of an integrable symplectic map in four dimensions found by Gubbiotti, Joshi, Tran and Viallet, who classified birational maps in 4D admitting two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth order with a certain symmetry. Hence, in this particular case, the map V2{\cal V}_2 yields genus two solutions of the Volterra lattice. The purpose of this note is to point out how two of the other 4D integrable maps obtained in the classification of Gubbiotti et al. correspond to genus two solutions of two different forms of the modified Volterra lattice, being related via a Miura-type transformation to the g=2g=2 Volterra map V2{\cal V}_2. We dedicate this work to a dear friend and colleague, Decio Levi

    Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events

    Get PDF
    After 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (e.g., nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges. And this profound expansion of its application range becomes even more remarkable when considering that it has been made possible in an a priori simple way: by providing faster data acquisition and developing the corresponding theoretical substrate to relate the time-resolved signals thus obtained with the elemental composition of the target entities. This review presents the underlying concepts behind single event-ICP-MS, which are needed to fully understand its potential, highlighting key areas of application (e.g., single particle-ICP-MS or single cell-ICP-MS) as well as of future development (e.g., micro/nanoplastics)

    Towards magnetic slowing of atoms and molecules

    Get PDF
    We outline a method to slow paramagnetic atoms or molecules using pulsed magnetic fields. We also discuss the possibility of producing trapped particles by adiabatic deceleration of a magnetic trap. We present numerical simulation results for the slowing and trapping of molecular oxygen

    Characterization of SiO2 Nanoparticles by Single Particle - Inductively Coupled Plasma – Tandem Mass Spectroscopy

    Get PDF
    This work uses the tandem ICP-MS (ICPMS/MS) for obtaining interference-freeconditions to characterize SiO2 nanoparticles ranging between 80 and 400nm. These NPs have been detected and accurately characterized. For SiO2 NPs >100 nm, it was possible to provide accurateresults in a straightforward way, as theirsignal distributions are well resolved fromthat of the background
    • …
    corecore