176 research outputs found

    Per la corretta attribuzione del "Romanzo delle donne contemporanee in Italia" (1863)

    Get PDF
    The use of free energy simulation techniques in the study of protein stability is critically evaluated. Results from two simulations of the thermostability mutation Asn218 to Ser218 in Subtilisin are presented. It is shown that components of the free energy change can be highly sensitive to the computational details of the simulation leading to the conclusion that free energy calculations cannot currently be used to reliably predict protein stability. The different factors that undermine the reliability are discussed

    The Effect of a ΔK280 Mutation on the Unfolded State of a Microtubule-Binding Repeat in Tau

    Get PDF
    Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer's disease. To decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a ΔK280 mutant, which is found in some forms of frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and ΔK280 sequences. In addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue, which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*. As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of β-structure downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates

    CONSTRAINED DYNAMICS OF FLEXIBLE MOLECULES

    No full text

    MOLECULAR-DYNAMICS OF PROTEINS AND NUCLEIC-ACIDS

    No full text

    THE ROLE OF COMPUTER-SIMULATION TECHNIQUES IN PROTEIN ENGINEERING

    No full text

    THE REFINEMENT OF NMR STRUCTURES BY MOLECULAR-DYNAMICS SIMULATION

    No full text
    We discuss the use of molecular dynamics simulations as a tool for the refinement of structures based on NMR data. The procedure always involves the construction of a pseudo-energy term to model the experimental data and we consider the various approaches to this problem. We detail recent work where we account for the time averaging implicit in NMR measurements and attempt to model the experimental data more realistically. Finally, we discuss the problems and approximations involved in this work, the lack of consensus as to refinement methods and the scope for future developments
    • …
    corecore