64 research outputs found

    On the relationship between force reduction, loading rate and energy absorption in athletics tracks

    Get PDF
    In this work, finite element simulations of typical sports surfaces were performed to evaluate parameters, such as the loading rate and the energy absorbed by the surface, in relation to its characteristics (surface structure and material properties). Hence, possible relations between these quantities and the standard parameters used to characterize the shock absorbing characteristics of the athletics track (in particular, its force reduction) were investigated. The samples selected for this study were two common athletics tracks and a sheet of natural rubber. They were first characterized by quasi-static compression tests; their mechanical properties were extrapolated to the strain rate of interest and their dependence on the level of deformation was modelled with hyperelastic constitutive equations. Numerical simulations were carried out for varying sample thicknesses to understand the influence of track geometry on force reduction, loading rate and stored energy. A very good correlation was found between force reduction and the other relevant parameters, with the exception of the loading rate at the beginning of the impact

    The relevance of extensional rheology on electrospinning: the polyamide/iron chloride case

    Get PDF
    The outcomes of the electrospinning of polyamide 6 (PA6) solutions in formic acid containing FeCl3 are correlated with the extensional rheological behaviour of these fluids, which is investigated by the self-controlled capillary breakup of a filament. The rheological analysis enlightens a significant effect of the FeCl3 content on the rheological behaviour, the viscous component becoming predominant over a certain salt content threshold. At this concentration, the electrospun fibres show the formation of severely inhomogeneous structures this indicating that an elastically dominated behaviour is necessary to yield defect-free fibres. Addition of FeCl3 also decreases fibre crystallinity and fibres turn out to be completely amorphous above a critical concentration. Interestingly, this concentration coincides with the one at which the viscous component starts dominating the rheological behaviour

    Synergies of material and geometrical non-linearities allow for the tuning of damping properties of functionally graded composite materials

    Get PDF
    In this study, we present an alternative fabrication technique to obtain functionally graded polymer–metal composites. The aim is to obtain a composite material with a graded damping factor, which is provided by the presence of pseudoelastic nickel–titanium (NiTi) fibres within an epoxy resin matrix. A preliminary dynamic mechanical characterisation of the NiTi wire revealed a pre-strain dependency of its damping factor. By fabricating wires with curved geometries in the free state, we were able to obtain fibres with a graded level of pre-strain when straightened. This feature in turn imparts a graded damping response. When encapsulating the straightened fibres in an epoxy resin, the graded damping response is transferred to the composite

    Extrusion of metal powder-polymer mixtures : melt rheology and process stability

    Get PDF
    The mixture of metal powder and a viscous polymeric binder (often referred to as feedstock) is commonly used for Metal Injection Moulding (MIM) applications. Recently, the interest towards the extrudability of metal/binder feedstocks is increasing, especially because of the growth of additive manufacturing techniques based on the vertical extrusion and layered deposition of filaments. In this experimental work, a feedstock prepared as a mixture of stainless steel 316 L powder with water-soluble binder was tested. The rheological behaviour of different mixtures (with powder loading between 50 and 63% in volume) was assessed using a capillary rheometer. The theoretical window of optimal extrudability was determined, in terms of temperature, shear rate and powder loading. Then, a specially designed CNC controlled extrusion system was used for performing vertical extrusion tests. The analysis of extrusion pressure profiles and the dimensional variability of the filaments was used to correlate the theoretical extrudability predicted by the rheological model with the actual extrusion tests. All results indicate that the conditions which yield better stability of the extrusion process are those that allow higher viscosity of the mixtures

    Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications

    Get PDF
    Rheological characterization of ethylcellulose (EC)-based melts intended for the production, via micro-injection moulding (ÎźIM), of oral capsular devices for prolonged release was carried out. Neat EC, plasticized EC and plasticized EC containing solid particles of a release modifier (filler volume content in the melt around 30%) were examined by capillary and rotational rheometry tests. Two release modifiers, differing in both chemical nature and particle geometry, were investigated. When studied by capillary rheometry, neat EC appeared at process temperatures as a highly viscous melt with a shear-thinning characteristic that progressively diminished as the apparent shear rate increased. Thus, EC as such could not successfully be processed via ÎźIM. Plasticization, which induces changes in the material microstructure, enhanced the shear-thinning characteristic of the melt and reduced considerably its elastic properties. Marked wall slip effects were noticed in the capillary flow of the plasticized EC-based melts, with or without release modifier particles. The presence of these particles brought about an increase in viscosity, clearly highlighted by the dynamic experiments at the rotational rheometer. However, it did not impair the material processability. The thermal and rheological study undertaken would turn out a valid guideline for the development of polymeric materials based on pharma-grade polymers with potential for new pharmaceutical applications of ÎźIM

    Agar Foam: Properties and Cleaning Effectiveness on Gypsum Surfaces

    Get PDF
    : In the past decade, the usage of soft materials, like gels, has allowed for a better control of the water release process into the substrate for cleaning interventions. Agar—a natural polysaccharide harvested from algae—has been used to perform cleaning of stone materials, gypsum works, and paintings with remarkably positive results. Agar presents the great advantage of being cheap, easily available, fast to produce and not toxic, allowing for more sustainable conservation works. More recently, a new type of agar fluid, agar foam, promises further control of the water release and ease of application on delicate surfaces. In the present study, this new type of agar, CO2 and N2O foams, has been characterized and compared with the conventional sol/gel agar system. Moreover, the cleaning effectiveness of the agar foam was tested both in laboratory conditions and in two case studies: a historical gypsum from the porch framing of the Abbey of Nonantola, and the 20th century gypsum cast of the Pietà Rondanini by Michelangelo, located in the Sforza Castle in Milan. The obtained results show that foaming changes the sol-gel transition temperature of the agar gel as well as incrementing its dissipative behavior. When freshly applied, the foams flow with a reduced velocity, thus allowing a better control and ease of application. Once gelified, they act as a soft solid-like material, as shown by their rheological properties. Moreover, it was found that CO2 foam slightly reduces the water release to the surface, while maintaining the moldability and ease of application. The study allows for the conclusion that agar foam offers an interesting alternative for delicate surfaces, with a non-coherent mineral deposit, and with complex geometries that often represent a challenge for the conventional agar application

    Pectin-based bioinks for 3D models of neural tissue produced by a pH-controlled kinetics

    Get PDF
    Introduction:In the view of 3D-bioprinting with cell models representative of neural cells, we produced inks to mimic the basic viscoelastic properties of brain tissue. Moving from the concept that rheology provides useful information to predict ink printability, this study improves and expands the potential of the previously published 3D-reactive printing approach by introducing pH as a key parameter to be controlled, together with printing time. Methods:The viscoelastic properties, printability, and microstructure of pectin gels crosslinked with CaCO3 were investigated and their composition was optimized (i.e., by including cell culture medium, HEPES buffer, and collagen). Different cell models representative of the major brain cell populations (i.e., neurons, astrocytes, microglial cells, and oligodendrocytes) were considered. Results and Discussion:The outcomes of this study propose a highly controllable method to optimize the printability of internally crosslinked polysaccharides, without the need for additives or post-printing treatments. By introducing pH as a further parameter to be controlled, it is possible to have multiple (pH-dependent) crosslinking kinetics, without varying hydrogel composition. In addition, the results indicate that not only cells survive and proliferate following 3D-bioprinting, but they can also interact and reorganize hydrogel microstructure. Taken together, the results suggest that pectin-based hydrogels could be successfully applied for neural cell culture

    Hep3Gel: A Shape-Shifting Extracellular Matrix-Based, Three-Dimensional Liver Model Adaptable to Different Culture Systems

    Get PDF
    Drug-induced hepatotoxicity is a leading cause of clinical trial withdrawal. Therefore, in vitro modeling the hepatic behavior and functionalities is not only crucial to better understand physiological and pathological processes but also to support drug development with reliable high-throughput platforms. Different physiological and pathological models are currently under development and are commonly implemented both within platforms for standard 2D cultures and within tailor-made chambers. This paper introduces Hep3Gel: a hybrid alginate-extracellular matrix (ECM) hydrogel to produce 3D in vitro models of the liver, aiming to reproduce the hepatic chemomechanical niche, with the possibility of adapting its shape to different manufacturing techniques. The ECM, extracted and powdered from porcine livers by a specifically set-up procedure, preserved its crucial biological macromolecules and was embedded within alginate hydrogels prior to crosslinking. The viscoelastic behavior of Hep3Gel was tuned, reproducing the properties of a physiological organ, according to the available knowledge about hepatic biomechanics. By finely tuning the crosslinking kinetics of Hep3Gel, its dualistic nature can be exploited either by self-spreading or adapting its shape to different culture supports or retaining the imposed fiber shape during an extrusion-based 3D-bioprinting process, thus being a shape-shifter hydrogel. The self-spreading ability of Hep3Gel was characterized by combining empirical and numerical procedures, while its use as a bioink was experimentally characterized through rheological a priori printability evaluations and 3D printing tests. The effect of the addition of the ECM was evident after 4 days, doubling the survival rate of cells embedded within control hydrogels. This study represents a proof of concept of the applicability of Hep3Gel as a tool to develop 3D in vitro models of the liver
    • …
    corecore