481 research outputs found
Recommended from our members
Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling.
BACKGROUND:Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes. RESULTS:Host selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system. CONCLUSIONS:Plant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability
Enterobacter cloacae infection of an expanded polytetrafluoroethylene femoral-popliteal bypass graft: a case report
<p>Abstract</p> <p>Introduction</p> <p><it>Enterobacter cloacae </it>infections are common among burn victims, immunocompromised patients, and patients with malignancy. Most commonly these infections are manifested as nosocomial urinary tract or pulmonary infections. Nosocomial outbreaks have also been associated with colonization of certain surgical equipment and operative cleaning solutions. Infections of an aortobifemoral prosthesis, an aortic graft, and arteriovenous fistulae are noted in the literature. To our knowledge, this is the first isolated account of an <it>E. cloacae </it>infection of a femoral-popliteal expanded polytetrafluoroethylene bypass graft.</p> <p>Case presentation</p> <p>A 68-year-old Caucasian man presented with fever and rest pain in the right lower extremity five months after the placement of a vascular expanded polytetrafluoroethylene graft for femoral-popliteal bypass. Computed tomography angiography demonstrated peri-graft fluid that was aspirated percutaneously with image guidance and cultured to reveal <it>E. cloacae</it>. The graft was revised and then removed. The patient completed a six-week course of ceftazidime and is currently without signs of infection. There were no other reports of <it>E. cloacae </it>graft infections in any patients receiving treatment in the same surgical suite within a month of this report.</p> <p>Conclusion</p> <p>Isolated cases of <it>E. cloacae </it>infection of surgical bypass grafts are rare (unique in this setting). Clinicians should have a high index of suspicion for device contamination in such cases and should consider testing for possible microbial reservoirs. Graft removal is required due to the formation of biofilm and the recent emergence of Enterobacteriaceae producing extended-spectrum beta-lactamase in community acquired infections.</p
Revised astrometric calibration of the Gemini Planet Imager
We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry
Oxygen Saturation and Suck-Swallow-Breathe Coordination of Term Infants during Breastfeeding and Feeding from a Teat Releasing Milk Only with Vacuum
Background. Vacuum is an important factor in milk removal from the breast, yet compression is the predominant component of milk removal from bottle teats. Since bottle-feeding infants have lower oxygen saturation, vacuum levels, and different suck-swallow-breathe (SSwB) coordination to breastfeeding infants, we hypothesised that when infants fed from a teat that required a vacuum threshold of −29 mmHg for milk removal, that oxygen saturation, heart rate, and suck-swallow-breathe (SSwB) patterns would be similar to those of breastfeeding. Study Design. Infants (=16) were monitored during one breastfeed and one feed from the experimental teat. Simultaneous recordings were made of oxygen saturation, heart rate, vacuum, tongue movement, respiration, and swallowing. Results. There were no differences in oxygen saturation and heart rate between the breast and the teat. Infants displayed fewer sucks and breaths per swallow during nutritive sucking (NS) compared to non-nutritive sucking (NNS). The number of sucks per breath was similar for NS and NNS although respiratory rates were slower during NS. These patterns did not differ between the breast and the teat. Conclusion. These results suggest that vacuum may be conducive to safe and coordinated milk removal by the infant during both breast and bottle-feeding
Root and crown rot pathogens found on dry beans grown in Mozambique
Dry edible beans are a vital food source in Mozambique, East Africa—one that alleviates hunger and malnutrition and adds value to the economy. In recent years, root/crown rot (RCR) pathogens have emerged as limiting constraints in dry bean production. Not much has been characterized concerning the causal agents of RCR in Mozambique. The purpose of this study was to identify the primary pathogen(s) associated with RCR dry bean samples collected at breeder nursery sites and farmer fields in Mozambique using molecular sequencing and culture-based methods. Sequencing revealed, not surprisingly, an increased diversity of fungal/oomycete operational taxonomic units when compared to culture-based methods of diversity. Species of Fusarium, mainly F. oxysporum, were the dominant taxa detected in RCR dry beans through sequencing the ITS rDNA region and partial EF-1α gene. Collectively, 333 fungi and/or Oomycetes were isolated in culture during the 2014–2015 growing seasons and tested for pathogenicity on healthy bean seedlings. Fusarium species were identified by both morphological and molecular characters. At least 60% of the isolates inoculated on common bean were recognized as potentially pathogenic. From both isolation frequency and pathogenicity testing, F. oxysporum and related species play an important role in the bean RCR complex. We found similar results from dry beans grown in the two main bean-growing regions of Mozambique. These findings will allow breeders to screen for resistance to F. oxysporum in greenhouse grown bean plants as well as within field grown bean cultivars
25 Years of Research in Human Lactation: From Discovery to Translation.
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation
Forecasting Seizures in Dogs with Naturally Occurring Epilepsy
Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low-gamma (30-70 Hz), and high-gamma (70-180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring
Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct
imaging survey of 600 stars to discover and characterize young Jovian
exoplanets and their environments. We have developed an automated data
architecture to process and index all data related to the survey uniformly. An
automated and flexible data processing framework, which we term the Data
Cruncher, combines multiple data reduction pipelines together to process all
spectroscopic, polarimetric, and calibration data taken with GPIES. With no
human intervention, fully reduced and calibrated data products are available
less than an hour after the data are taken to expedite follow-up on potential
objects of interest. The Data Cruncher can run on a supercomputer to reprocess
all GPIES data in a single day as improvements are made to our data reduction
pipelines. A backend MySQL database indexes all files, which are synced to the
cloud, and a front-end web server allows for easy browsing of all files
associated with GPIES. To help observers, quicklook displays show reduced data
as they are processed in real-time, and chatbots on Slack post observing
information as well as reduced data products. Together, the GPIES automated
data processing architecture reduces our workload, provides real-time data
reduction, optimizes our observing strategy, and maintains a homogeneously
reduced dataset to study planet occurrence and instrument performance.Comment: 21 pages, 3 figures, accepted in JATI
- …