391 research outputs found

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR

    Confined granular packings: structure, stress, and forces

    Full text link
    The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how the final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces P(f)P(f) exhibit exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references, fixed typo

    Rheology of a confined granular material

    Full text link
    We study the rheology of a granular material slowly driven in a confined geometry. The motion is characterized by a steady sliding with a resistance force increasing with the driving velocity and the surrounding relative humidity. For lower driving velocities a transition to stick-slip motion occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose a model to explain this behavior pointing out the leading role of friction properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR

    Primary retroperitoneal soft tissue sarcoma: Imaging appearances, pitfalls and diagnostic algorithm.

    Get PDF
    Although retroperitoneal sarcomas are rare tumours, they can be encountered by a wide variety of clinicians as they can be incidental findings on imaging or present with non specific symptoms and signs. Surgical resection can offer hope of cure and patient outcomes are improved when patients are managed in high-volume specialist centers. Failure to recognize retroperitoneal sarcomas on imaging can lead to inappropriate management in inexperienced centers. Therefore it is critical that a diagnosis of retroperitoneal sarcoma should be considered in the differential diagnosis of a retroperitoneal mass with prompt referral to a soft tissue sarcoma unit. In particular, the most common retroperitoneal sarcoma subtypes, liposarcoma and leiomyosarcoma, have characteristic imaging appearances which are discussed. This review therefore aims to set the context and guide clinicians through a diagnostic pathway for retroperitoneal masses in adults which arise extrinsic to the solid abdominal viscera

    Footprints in Sand: The Response of a Granular Material to Local Perturbations

    Full text link
    We experimentally determine ensemble-averaged responses of granular packings to point forces, and we compare these results to recent models for force propagation in a granular material. We used 2D granular arrays consisting of photoelastic particles: either disks or pentagons, thus spanning the range from ordered to disordered packings. A key finding is that spatial ordering of the particles is a key factor in the force response. Ordered packings have a propagative component that does not occur in disordered packings.Comment: 5 pages, 4 eps figures, Phys. Rev. Lett. 87, 035506 (2001

    Clear Cell Sarcoma (Malignant Melanoma) of Soft Parts: A Clinicopathologic Study of 52 Cases

    Get PDF
    Clear cell sarcomas are aggressive, rare soft tissue tumors and their classification among melanoma or sarcoma is still undetermined due to their clinical, pathologic, and molecular properties found in both types of tumors. This is a retrospective study of 52 patients with CCS seen between April 1979 and April 2005 in two institutions. The EWS-ATF-1 fusion transcript was studied in 31 patients and an activating mutation of the BRAF or NRAS gene was researched in 22 patients. 30 men and 22 women, with a mean age of 33 were studied. Forty-three tumors (82.69%) were located in the extremities, specially the foot (19 tumors). Median initial tumor size was 4.8 cm (1 to 15 cm). Necrosis involving more than 50% of the tumor cells was found in 14 cases (26.92%). High mitotic rate (>10) was found in 25 cases (48.07%). The EWS/ATF-1 translocation was found in 28 (53.84%) of 31 patients studied, and mutation of BRAF or NRAS was found in only 2 of 22 patients analyzed cases (3.84%). Among the tumor-associated parameters, only tumor size (>4 cm) emerged as a significant prognostic factor. Forty-nine patients had a localized disease at diagnosis (94.23%) and underwent surgical resection immediately (90%) or after neoadjuvant chemotherapy (CT) (10%). Various CT regimens were used in 37 patients (71.15%) with no significant efficacy. The 5- and 10-year OS rates were 59% and 41%, respectively. Tumor size was the only emerging prognosis factor in our series. Complete surgical resection remains the optimal treatment for this aggressive chemoresistant tumor

    Morphology of two dimensional fracture surface

    Full text link
    We consider the morphology of two dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behavior of all these models.Comment: slightly revise

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results

    Full text link
    We study the response of a two-dimensional hexagonal packing of massless, rigid, frictionless spherical grains due to a vertically downward point force on a single grain at the top layer. We use a statistical approach, where each mechanically stable configuration of contact forces is equally likely. We show that this problem is equivalent to a correlated qq-model. We find that the response is double-peaked, where the two peaks, sharp and single-grain diameter wide, lie on the two downward lattice directions emanating from the point of the application of the external force. For systems of finite size, the magnitude of these peaks decreases towards the bottom of the packing, while progressively a broader, central maximum appears between the peaks. The response behaviour displays a remarkable scaling behaviour with system size NN: while the response in the bulk of the packing scales as 1N\frac{1}{N}, on the boundary it is independent of NN, so that in the thermodynamic limit only the peaks on the lattice directions persist. This qualitative behaviour is extremely robust, as demonstrated by our simulation results with different boundary conditions. We have obtained expressions of the response and higher correlations for any system size in terms of integers corresponding to an underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2 reorganized and rewritten; Details about the simulation procedure added in Sec.3.1. ; A new section, summarizing the final results and the calculation procedure adde
    • 

    corecore