65 research outputs found

    Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents

    Get PDF
    Many studies have tackled the problem of previous termvortex-induced vibrationsnext term (VIV) of a vertical riser with a constant tension and placed in uniform currents. In this study, attention is focused on the cross-flow VIV modelling, time-domain previous termanalysis and predictionnext term of variable-tension vertical risers in linearly sheared currents. The partial-differential equation governing the riser transverse motion is based on a flexural tensioned-beam model with typical pinned–pinned supports. The hydrodynamic excitation model describing the modulation of lift force is based on a distributed van der Pol wake oscillator whose nonlinear equation is also partial-differential due to the implementation of a diffusion term. The variation of empirical wake coefficients with system parameters and the water depth-dependent Reynolds number is introduced. Based on the assumed Fourier mode shape functions obtained by accounting for the effect of non-uniform tension, the Galerkin technique is utilized to construct a low-dimensional multi-mode model governing the coupled fluid-riser interaction system due to VIV. Numerical simulations in the case of varying sheared flow profiles are carried out to systematically evaluate riser nonlinear dynamics and highlight the influence of fluid–structure parameters along with associated VIV aspects. In particular, the effects of shear and tensioned-beam (tension versus bending) parameters are underlined. Some comparisons with published experimental results and observations are qualitatively and quantitatively discussed. Overall parametric previous termanalysis and predictionnext term results may be worthwhile for being a new benchmark against future experimental testing and/or numerical results predicted by an alternative model and methodology

    Reduced-order modelling of vortex-induced vibration of catenary riser

    Get PDF
    A new reduced-order model capable of analyzing the vortex-induced vibration of catenary riser in the ocean current has been developed. This semi analytical-numerical approach is versatile and allows for a significant reduction in computational effort for the analysis of fluid-riser interactions. The incoming current flow is assumed to be steady, uniform, unidirectional and perpendicular to the riser plane of initial equilibrium curvatures. The equations of riser 3-D motion are based on a pinned-pinned, tensioned-beam or flexural cable, modelling which accounts for overall effects of riser bending, extensibility, sag, inclination and structural nonlinearities. The unsteady hydrodynamic forces associated with cross-flow and in-line vibrations are modelled as distributed van der Pol wake oscillators. This hydrodynamic model has been modified in order to capture the effect of varying initial curvatures of the inclined flexible cylinder and to describe the space-time fluctuation of lift and drag forces. Depending on the vortex-excited in-plane/out-of-plane modes and system fluid-structure parameters, the parametric studies are carried out to determine the maximum response amplitudes of catenary risers, along with the occurrence of uni-modal lock-in phenomenon. The obtained results highlight the effect of initial curvatures and geometric nonlinearities on the nonlinear dynamics of riser undergoing vortex-induced vibration

    Burst and persistent emission properties during the recent active episode of the anomalous x-ray pulsar 1E 1841-045

    Get PDF
    Copyright American Astronomical SocietyThe Swift/Burst Alert Telescope detected the first burst from 1E 1841-045 in 2010 May with intermittent burst activity recorded through at least 2011 July. Here we present Swift and Fermi/Gamma-ray Burst Monitor observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T-90 durations of the bursts range between 18 and 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 10(38) erg, which is on the low side of soft gamma repeater bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large-scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.Peer reviewedFinal Accepted Versio
    • …
    corecore