
Strathprints Institutional Repository

Srinil, N. and Wiercigroch, M. and O’ Brien, P. (2009) Reduced-order modelling of vortex-induced
vibration of catenary riser. Ocean Engineering, 36 (17-18). pp. 1404-1414. ISSN 0029-8018

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Srinil, N. and Wiercigroch, M. and O' Brien, P. (2009) Reduced-order modelling of vortex-induced 
vibration of catenary riser. Ocean Engineering, 36 (17-18). pp. 1404-1414. ISSN 0029-8018
 
 
 
 
http://strathprints.strath.ac.uk/18456/
 
 
 
This is an author produced version of a paper published in Ocean Engineering, 36 (17-18). 
pp. 1404-1414. ISSN 0029-8018. This version has been peer-reviewed but does not 
include the final publisher proof corrections, published layout or pagination. 
 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://strathprints.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://strathprints.strath.ac.uk/18456/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


1

Reduced-Order Modelling of Vortex-Induced Vibration of 
Catenary Riser

Narakorn Srinila, b *, Marian Wiercigrocha, Patrick O’Brienb 

aCentre for Applied Dynamics Research, School of Engineering, University of Aberdeen,

King’s College, Scotland UK, bMCS, Aberdeen, Scotland UK

Abstract

A new reduced-order model capable of analyzing the vortex-induced vibration of catenary riser in 

the ocean current has been developed. This semi analytical-numerical approach is versatile and 

allows for a significant reduction in computational effort for the analysis of fluid-riser 

interactions. The incoming current flow is assumed to be steady, uniform, unidirectional and 

perpendicular to the riser plane of initial equilibrium curvature. The equations of riser 3-D motion 

are based on a pinned-pinned, tensioned-beam or flexural cable, modelling which accounts for 

overall effects of riser bending, extensibility, sag, inclination and structural nonlinearities. The 

unsteady hydrodynamic forces associated with cross-flow and in-line vibrations are modelled as 

distributed van der Pol wake oscillators. This hydrodynamic model has been modified in order to 

capture the effect of varying initial curvature of the inclined flexible cylinder and to describe the 

space-time fluctuation of lift and drag forces. Depending on the vortex-excited in-plane/out-of-

plane modes and system fluid-structure parameters, the parametric studies are carried out to 

determine the maximum response amplitudes of catenary risers, along with the occurrence of uni-

modal lock-in phenomenon. The obtained results highlight the effect of initial curvatures on the 

nonlinear dynamics of riser undergoing vortex-induced vibration.
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1. INTRODUCTION

Steel catenary risers (SCRs) are widely used in offshore installation, exploration and production. 

Because of their promising technological and commercial solutions, SCRs have become primary 

candidates for future ultra deepwater oil & gas industry. One of the key issues in the analysis and 

design of SCRs in the ocean current is to estimate and control the fatigue damage due to vortex-

induced vibration (VIV). Nevertheless, recent understanding of VIV is still based on empirical 

and/or simplified linearized models of straight top-tensioned risers (TTRs). Due to the 

impracticality of time-consuming 3-D flow visualizations by CFD (Computational Fluid 

Dynamics) for a long slender structure, the VIV fluid excitation and damping forces usually rely 

on the hydrodynamics data obtained from a laboratory testing of an elastically-supported rigid 

cylinder vibrating with 1 or 2 degree-of- freedom (DOF) in a uniform flow at low Reynolds (Re) 

numbers. Therefore, many uncertainties arise when designing the SCRs which are actually 

flexible inclined cylinders having initial sags and varying curvatures. As a matter of fact, SCRs 

are substantially different from TTRs, e.g., in view of the current flow direction relative to the 

pipe axis. The incident angle is arbitrary and different from 90o when the flow aligns with the 

SCR plane of curvature. Moreover, a slender long sagged structure exhibits the cable-dominated 

behavior and has multiple natural frequencies which, in turn, potentially give rise to different in-

plane/out-of-plane modal interactions occurring in cross-flow/in-line VIV. 

Nowadays, numerous frequency and time domain analysis tools for predicting nonlinear 

dynamic responses of risers undergoing VIV are available in industry. In spite of this, the state-

of-the-art comparisons of VIV responses still exhibit significant discrepancies, even in the case of 

TTRs, between theoretical predictions and experimental measurements (Larsen and Halse 1997, 

Chaplin et al. 2005). More importantly, not much is actually known about VIV behaviour of 

SCRs. A prediction of fatigue damage of SCR has been shown by Vandiver and Gonzalez (1997) 

based on the combined use of mode superimposition and frequency domain approach. It has been 

realized that higher mode contributions are quite important to the damage rate. Due to the lack of 

empirical data on VIV of inclined and curved cylinders, the STRIDE joint industrial project has 

been initiated (Willis and Thethi 1999) to perform advanced testing on the VIV of towed curved 

pipes with/without strakes in water-tank and open-water environment. The corresponding 

experiment data have subsequently been considered by Moe et al. (2004) in order to validate the 

theoretical finite-element modelling. Because the experiment provides highly amplitude-

modulated signals whereas the analysis tool provides steady-state responses, they have 

encountered the difficulty in making a direct comparison between analytical and experimental 

results even in the case of uniform flow. As a result, some discrepancies occurred and a number 
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of experimental observations could not be theoretically explained. Lie et al. (2001) pointed out 

the significance of using the time domain approach with the inclusion of structural nonlinearities 

in the VIV analysis of SCRs. 

Recently, an investigation into vortex shedding patterns and fundamental wake topology when 

the flow past a stationary curved circular cylinder has been carried out by Miliou et al. (2003, 

2007). As a result of pipe curvatures, the computational simulations highlight different kinds of 

wake characteristics depending on the pipe (convex or concave) configuration and its orientation 

with respect to (aligned with or normal to) the incoming flow. When the flow is uniform and 

normal to the curvature plane, the cross-flow wake dynamics of curved pipes behave qualitatively 

similar to those of straight pipes. This is in contrast to the case of flow being aligned with the 

curvature plane where wake dynamics change dramatically. For this reason, in our initial study, 

the current flow approaching the SCR is assumed to be steady, unidirectional, uniform and 

perpendicular to the curvature plane of inclined cylinder (see Fig. 1). This avoids the multiplicity 

of vortex shedding frequencies (e.g., the case of flow aligned with the curvature plane) which 

would complicate the modelling and analysis. 

Herein, the main emphasis is kept to evaluate the cross-flow and in-line VIV of SCRs due to 

fluctuating lift and drag forces, respectively. The paper is structured as follows. In Section 2, a 

general realistic fluid-structure interaction model for SCR (as well as TTR) with arbitrary sag and 

inclination is developed. The geometrically nonlinear equations of riser 3-D motion are derived 

accounting for both bending and tension rigidities. The catenary riser static configuration and 

corresponding modal shape functions are approximated by the hyperbolic and sine-series 

continuous functions, respectively. To model complex hydrodynamics where dynamic fluid 

forces are spatially distributed on the underwater cylindrical body, a phenomenological approach 

is used where spatially wake oscillators with relevant empirical coefficients are implemented. By 

coupling the wake oscillators to the riser equations governing in-plane and out-of-plane motions, 

a reduced-order model for the analysis of hydro/elastic-cylinder interaction due to uni-modal VIV 

is obtained in Section 3 and then systematically investigated in Section 4. The main objectives are 

(i) to determine the occurrence of lock-in phenomenon when varying the reduced flow velocity 

parameter and to predict, as well as validate, the associated maximum response amplitudes of 

SCRs, (ii) to investigate the effect of overall fluid-structure parameters and (iii) to highlight the 

significance of riser initial curvatures and riser geometric nonlinearities. 
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2. FLUID-RISER INTERACTION MODEL 

With reference to the global Cartesian coordinate system, Figure 1 depicts a general 3-D 

continuum model of SCR connected from a stationary floating structure to a seabed with simply 

pinned-pinned supports. A horizontal offset XH and water depth YH define a chord inclination 

angle of riser (i.e., r = tan-1YH/XH). Riser properties are considered to be spatially uniform with 

mass/length (m), viscous damping coefficient (c), hydrodynamic diameter (D), effective bending 

(EI) and axial (EAr) stiffness. The steady incoming uniform flow, having density () and normal 

velocity (V), is in the Z+-direction perpendicular to the SCR plane (XY) of initial equilibrium 

curvatures. Following the Strouhal number (St) law of a stationary cylinder, the flow entails a 

single natural frequency (rad/s) of vortex shedding in the wake (s), i.e., s = 2StV/D, where St 

≈ 0.2 being assumed for a sub-critical flow condition with 300 < Re < 3x105 (e.g., Sumer and 

Fredsoe 1997).

2.1 Geometrically Nonlinear Equations of Riser Motion

In deepwater applications, the riser has a large aspect (length-to-diameter) ratio and is usually 

predominated by the tension behavior. Therefore, by considering the riser as a flexural sagged 

cable-like elastic structure satisfying the Euler-Bernoulli beam hypothesis, the nonlinear partial-

differential equations of riser motion about its planar (XY) static equilibrium configuration may be 

expressed in a general dimensional form as (Srinil et al. 2007; Ricciardi and Saitta 2008)
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in which s denotes Lagrangian or arc-length coordinate and t denotes time. u (x) v (y) and w
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represent global dynamic (static) displacement in the horizontal (X), vertical (Y) and transversal 

or out-of-plane (Z) direction, respectively. T denotes axial static tension of riser due to effective 

weight, ma denotes potential added mass (CAAr, where Ar is circular cross-sectional area, CA=1), 

and Fi denotes external hydrodynamic (lift/drag) forces leading to VIV. By accounting for both 

bending (Ricciardi and Saitta, 2008) and axial (e.g., Srinil et al. 2007) rigidities, Equations (1)-(3) 

are also valid for a top-tensioned riser (TTR), mooring line or horizontal pipeline with zero sag. 

Overall inertia effects and structural nonlinearities (Srinil and Rega, 2007b), which are 

meaningful in the case of large dynamic displacement or deformation, are fully accounted for. It 

is worth mentioning that the effects of shear, torsion, seabed interaction and internal-flow-

induced friction forces, which are quite important for SCRs, are not herein considered. In the 

following, all the space-related variables and associated equations are non-dimensionalized with 

respect to D.

For convenience in our analytical modelling, a planar submerged static configuration of SCR 

solely due to effective self weight is assumed, whereas the bending restraint and the uniform 

current flow play a role after the performance of static equilibrium. The neglected static bending 

is plausible because the end boundaries are pinned-pinned and the SCR curvatures are relatively 

small. Accordingly, the higher-order spatial derivatives of x and y in Eqs. (1) and (2) are 

disregarded, and the static profile of SCR is simply governed by

21 ,H
E

T
y W y

D
                                         (4)

in which a dash denotes differentiation with respect to the new space variable x, WE is the 

computed effective weight accounting for buoyancy effect, and TH is a horizontal component of 

riser tension which is spatially constant. By directly integrating Eq. (4) twice, the exact 

hyperbolic function-based formula describing the catenary configuration reads

1 2( ) cosh ,H E

E H

T W D
y x x C C

W D T

  
   

 
                                                (5)

where C1 are C2 can be determined based on boundary conditions. Thus, for a given D, m, r, XH

and TH, the SCR equilibrium can be explicitly determined and then substituted into Eqs. (1)-(3) as 

an embedded continuous function. 

As the current flow is normal to the SCR plane, the cross-flow (in-line) VIV due to lift FL

(drag FD) force corresponds to in-plane (out-of-plane) motion of SCR. By neglecting the 

tangential hydrodynamics, the excitation forces per unit length in Eqs. (1)-(3) read
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where  is a local angle of inclination (measured clockwise from the X-axis in Fig. 1) based on 

Eq. (5), in which  ≈ tan-1(y). CL (s,t) and CD (s,t) are unsteady lift and drag coefficients per unit 

length, respectively. It is worth noting that the mean drag, and possibly also the mean lift (Miliou 

et al. 2003, 2007), component, which potentially gives rise to a new SCR equilibrium, is here 

omitted as we focus on the fluctuating component.  

2.2 Nonlinear Wake Oscillators

To model the unsteady hydrodynamic forces as a result of vortex shedding in the cylinder wake, a 

nonlinear wake oscillator proves to be quite simple and the most computationally-effective means

(Gabbai and Benaroya 2005). This wake oscillator is scrutinized as simplified, phenomenological 

and semi-empirical model which provides the analyst an understanding of some fundamental 

nonlinear phenomena of VIV, in spite of having no involvement in the flow physical 

characterization. Some ad hoc assumptions are common in analytical models. These comprise, 

e.g., the consideration of nominal two-dimensional flow at all times, the full correlation length of 

vortex shedding along the cylinder length (i.e., under lock-in condition) and the neglected effects 

of end boundaries and stream-wise cylinder movement. To produce a benchmarking series of 

empirical wake coefficients vs. physical parameters, rigid and elastically-mounted cylinders in a 

uniform flow have been mostly considered in experimental campaigns. A wake oscillator is 

typically based on the nonlinear van der Pol equation having a term (terms) coupled with a 

structural equation of motion such as the linear spring-mass-damping oscillator. Almost all of the 

models reported in literature to date are restricted to lift forces governing cross-flow VIV, with 

the measurement set-up being usually rearranged such that the drag force governing in-line VIV 

is negligible or uncoupled with cross-flow VIV. Nevertheless, the wake oscillator proves to be 

quite useful for describing a self-limiting nature of VIV responses observed by many experiments 

and flow visualizations. In addition, the lock-in or synchronization regime can be analyzed along 

with the prediction of corresponding response amplitudes. Recently, the van der Pol oscillator for 

VIV has been revised by Skop and Balasubramanian SB (1997), Facchinetti, de Langre and 
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Biolley FLB (2004) in order to overcome some limitations of previous wake oscillators. Both 

models capture the self-limiting amplitude responses at zero structural damping and reproduce 

some qualitative, as well as quantitative, aspects of VIV when compared with experiment results. 

Regarding the application to flexible cylinders, the SB model has been used in the analysis of 

single-mode cross-flow/in-line VIV of horizontally suspended cables by Kim and Perkins (2002). 

The FLB model has been considered by Violette et al. (2007) for the cross-flow VIV of long 

straight tensioned-beam and cable based on a linear structural model. They showed a good 

comparison with direct numerical simulations and experiments. 

In this study, the SB model is considered. The distributed lift coefficient CL (s,t) and associated 

wake oscillator Q (s,t) are originally expressed as  

                              2
, , , ,L N

s

C s t Q s t Y s t



                                                                 (9)
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0, 4 , , , , ,s L s s NQ s t G C Q s t Q s t Q s t FY s t                           (10)

where   is a so-called stall parameter (Triantafyllou et al. 1994), YN is defined as a local riser 

displacement normal to its tangential axis, CL0 is a given lift coefficient of a stationary cylinder, 

and a dot denotes differentiation with respect to time. Wake coefficients are F and G , with the 

overbar denoting “empirical” quantity. To account for the effect of SCR initial curvature and also 

describe the concurrent horizontal/vertical displacement components of SCR in-plane motion, we 

project QX = -Qsin and QY = Qcosby using the cosine law. This entails two new wake 

oscillators
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In contrast to Eq. (10), Eqs. (11) and (12) are now dependent on both time and space variables. 

QX and QY are to be determined together with u and v. The wake coefficients ( F ,G ) are obtained 

by matching a series of experimental data which generally include the measurement of maximum 

response amplitude of cylinder A/D and vortex-to-structural frequency ratio during VIV (Skop 

and Balasubramanian 1997). As exemplified in Fig. 2, F and G are dependent on the system 

mass-damping (the so-called Skop-Griffin) parameter SG = /, in which  is the riser modal 

damping and   is the mass ratio given by
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As for in-line VIV, very few theoretical studies have proposed a wake oscillator governing the 

drag coefficient, and a practical tool for predicting the in-line VIV is still unavailable in industry. 

However, it is well known from many experiments (e.g., Okajima et al. 2004) that in-line VIV 

may take place in a reduced velocity range lower than that of cross-flow VIV with 

symmetric/alternate vortices. In addition, it may take place in the same reduced velocity range as 

cross-flow VIV with alternate vortices. Typically, the in-line VIV has a frequency twice that of 

cross-flow VIV during a complete 2-D lock-in. This entails that both out-of-plane and in-plane 

modes, whose natural frequencies are in nearly-tuned 2:1 ratio, are simultaneously excited. Based 

on this evidence and also considering the practical case of alternate vortices, we assume, by 

following Currie and Turnbull (1987), Kim and Perkins (2002),

               1 2
, , , , ,

2D
s s

C s t P s t P s t w s t


 
                                        (14)
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where P is the in-line wake component, H and J are empirical coefficients, and CD0 is the drag 

coefficient of the stationary cylinder.

It is worth emphasizing that Eqs.(6) and (11) (7 and 12) are dependent on both QX and u (QY

and v), exhibiting the two-way feedback coupled system of the wake-riser interactions. This holds 

also for Eqs.(8) and (15) involving P and w. In place of Eqs. (11) and (12), Eq. (10) is considered 

for cross-flow VIV of a straight vertical riser or horizontal pipe.

2.3 Riser Natural Frequencies and Modes with Bending-Tension Effect

In the framework of analytical modelling, the natural frequencies and mode shapes of pinned-

pinned SCRs (as well as TTRs) have to be determined in terms of continuous functions. In so 

doing, the linear equations of undamped free in-plane (u, v) and out-of-plane (w) motion, 

corresponding to Eqs.(1)-(3), are considered and given in a dimensionless form by
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where =(1+y2)1/2, =EAr/TH, b2=EI/(m+ma)D
4, c2 = TH/(m+ma)D

2. With zero displacements and 

bending moments at the end boundaries, the in-plane and out-of-plane modes are postulated in 

terms of a Fourier sine-based series as

   
1

, sin ,
N

J J
n

n H

n xD
U x t t

X




 
   

 
             (19)

where, for J = 1-3, U1 = u, U2 = v, U3 = w, J
n are generalized time coordinates, N is the number 

of retained sine functions. By substituting Eq. (19) into Eqs. (16)-(18) and applying the Galerkin 

method, the eigenvalue problem is solved via a hybrid analytical-numerical solution proposed by

Srinil et al. (2007). Note also that, for a pinned-pinned TTR with uniform tension and bending, 

both frequencies and modal shapes can be alternatively obtained via closed-form formulae, with 

both kth in-plane/out-of-plane modes being similar to taut-string modes. Nevertheless, this is not 

the case for SCRs, whose in-plane modes are significantly dependent on initial sagged and curved 

configurations. These modes are indeed neither purely symmetric nor anti-symmetric due to the 

effect of geometric asymmetry.

To understand the global in-plane/out-of-plane frequency relationships when varying some key 

parameters of the riser, it is worth constructing a spectrum of natural frequencies in still water. 

This is useful in view of detecting the potential cross-flow/in-line VIV modes. Due to the 

combined effect of riser bending, extensibility (axial tension) and geometry (sag/inclination), a 

single dimensionless tensioned-beam parameter is introduced, namely

,aL T EI                                                                     (20)

where L is the riser equilibrium length and Ta is the tension at maximum sag of SCR (or the 

averaged tension in the case of TTR). This parameter describes how the flexural (small ) or axial 

(large ) rigidity plays a predominant role. By normalizing the obtained SCR frequencies (by 

the lowest frequency of the corresponding TTR (T, the natural frequency spectrum of tension-

dominated risers is illustrated in Fig. 3 with T vs.  and solid (dotted) lines denoting in-plane 

(out-of-plane) modes. 
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In Fig. 3, Ta (also L) is varied while keeping EI fixed.  > 560 represents the case of TTRs (as 

sag 0, giving rise to the negligible WE effect with respect to Ta). The k in-plane/out-of-plane 

frequency ratio is apparently equal to 1 (like taut-string frequencies). However, when decreasing 

Ta (increasing sag), the lower  ( < 560) reflects the case of SCRs whose k in-plane/out-of-plane 

frequency ratio is different from 1. In some circumstances, the vortex frequency s (for a given 

V) may simultaneously excite the in-line/cross-flow VIV modes having a 2:1 frequency ratio, as 

exemplified by the circles corresponding to the 6th out-of-plane/2nd in-plane modes for  ≈ 272 

(vertical dashed line). With a further increase of V (thus s) for such , it is also possible that two 

higher in-plane (5th and 6th) modes – whose frequencies are nearly equal at a so-called avoidance 

region (Srinil and Rega, 2007a) – can be both excited. This may result in a multi-mode lock-in of 

cross-flow VIV (Hover et al. 1997). Yet, our attention is focused on the uni-modal lock-in 

behavior which will be analyzed through a reduced-order model derived in the following section. 

3. REDUCED-ORDER MODEL FOR CROSS-FLOW AND IN-LINE VIV 

With the aim of minimizing the computational effort, a reduced-order model describing the 

hydrodynamics-elastic cylinder interaction is now developed. The first-order (i.e. state-space) 

differential forms of Eqs. (1)-(3), (11), (12) and (15) are considered, and the expansion of 

displacement and velocity (defined by Ai, Bi) variables is postulated by the following forms,

For riser dynamics:            
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For wake dynamics:
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where m and m represent the horizontal and vertical component of mth in-plane (cross-flow 

VIV) modal shape function, n represents the nth out-of-plane (in-line VIV) modal shape function, 

fm (dm), pm (em), hn (zn), and qn (on) are the corresponding generalized coordinates of riser (wake) 

to be determined. By further assuming that both the fluid in the form of a distributed wake 
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oscillator and the riser dynamically respond in a similar fashion having a spatial shape profile 

corresponding to a potentially vortex-induced mode, the number of considered in-plane (out-of-

plane) modes is equal to 1. This assumption is plausible (see, e.g., Skop and Griffin, 1975; Kim 

and Perkins, 2002) as the flow is uniform and its direction is perpendicular to the SCR in-plane 

curvature, giving rise to a single vortex shedding frequency. Moreover, because the VIV 

amplitude is relatively small with respect to D (Sarpkaya 2004), contributions from higher-order 

modes through structural nonlinearities may be negligible (Srinil and Rega, 2007b). By

substituting Eqs. (21) and (22) into Eqs. (1)-(3), (11), (12) and (15), applying the Galerkin 

method with relevant boundary conditions and orthonormalization of modal shapes, a set of 

nonlinearly coupled equations, governing a single in-plane/out-of-plane mode VIV response and 

fulfilling the 2-D lock-in (i.e. n ≈ 2m ≈ 2s) condition, is obtained as  
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where the modal shape-based quadratic and cubic nonlinear coefficients are given by
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It can be analytically proved that 2nm mn  and nm mn   . Eqs.(31)-(37) are numerically 

integrated based on a 64-point Gaussian Quadrature. When considering a straight riser (or 

horizontal cable) involving an anti-symmetric mode in the VIV, some coefficients are trivial due 

to the nonlinear orthogonality of modal shape functions (Srinil and Rega 2007a). Depending on 

assigned initial conditions, empirical coefficients and fluid-structure parameters, Eqs.(23)-(30) 

are simultaneously solved by numerical integrations with a proper time stepping method. To 

perform parametric studies, it is worth making a reference to a reduced flow velocity parameter, 

                  
2 1

,
Str

m

V
U

D


 

                (38)

where  = m/s being a reduced angular frequency of the riser. Here, D is fixed, whereas Ur is 

varied through the first or second relationship in Eq. (38). In the first relation, the flow velocity V

is varied whereas, in the second relation, the vortex frequency s or the riser in-plane frequency 

m is varied through  while keeping V (Re) fixed. Typically, for convenience in the experiments, 

V is increased or decreased while keeping other properties of the tested cylinder fixed. Yet, for 

long flexible cylinders such as marine risers, the system frequencies (m, n) may be closely 

spaced (e.g., Fig. 3) and, when varying such V, different potential modes may be excited 

according to the resultant shedding frequency s. Moreover, due to the associated variation of Re, 

the assumption of sub-critical flow in making use of the wake oscillator might not be valid when 

further increasing V. To circumvent this, the V (Re) may be fixed by parametrically varying m or 

s. If m is varied, the so-called true, in-situ or oscillation frequency is realized as m ± , where 

 is a cross-flow frequency detuning parameter. This variation is practically reasonable since the 

structural natural frequency during VIV is indeed modulated due to the varying added mass 

coefficient (Blevin 1990, Vandiver 1993). Alternatively, by keeping m fixed, s may be varied 

through s ± , where  is a vortex frequency detuning parameter, since the vortex frequency of 
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oscillating cylinder may be different from that of stationary cylinder given by Strouhal law. The 

variation of out-of-plane (or in-line VIV) frequency n can be made in the same manner. When 

obtaining the steady-state solution of Eqs. (23)-(30), the temporally (fm or hn) and spatially (�m, 

φm or ζn) maximum amplitudes due to cross-flow (Am/D) and in-line (An/D) VIV can be deduced 

from the time histories in conjunction with Eq. (21). Namely,

           
   2 2

,

.

m m m m m

n n n

A D Max f f

A D Max h

 



 


             (39)

Because of solving for the temporal generalized coordinate (fm or hn) based on a single-mode VIV 

analysis, the spatial location of maximum VIV amplitude is the same as the anti-node position of 

the corresponding linear mode shape function (�m, φm or ζn). 

4. PARAMETRIC INVESTIGATIONS 

As an example, we first consider a tension-dominated SCR with high aspect ratio (L/D) ≈ 2581, 

r = 30o,  ≈ 1669, b2 ≈ 8.1x106, c2 ≈ 7.8x104,  ≈ 272 (corresponding to Fig. 3). The fluid-

structure parameters are  ≈ 0.044, SGm = SGn ≈ 0.068 (i.e. both in-plane/out-of-plane modal 

damping values are assumed to be equal, with = 0.003), CL0 = 0.28, CD0 = 0.20,  ≈ 0.183, F ≈ 

0.398 and G ≈ 1.061 (see Fig. 2). As analytical formulae for estimating the empirical wake 

coefficients of in-line VIV are unavailable in literature, we shall assume J F and H G . For 

the given averaged V = 0.34 m/s, the computed s ≈ 1.112 rad/s and the potential cross-flow (in-

line) VIV mode corresponds to the 2nd in-plane (6th out-of-plane) mode (Fig. 3) with m ≈ 1.033 

(n ≈ 2.207) rad/s. The associated normalized in-plane (,) and out-of-plane () modal shape 

functions projected onto the X-axis are displayed in Fig. 4 with convergent 40 sine functions 

(Srinil et al. 2007). These nearly-symmetric (4a) and anti-symmetric (4b) modes, together with 

above-mentioned parameters, are considered, unless stated otherwise, in the following parametric 

studies of uni-modal cross-flow/in-line VIV.

4.1 Nonlinear Dynamic Interactions and Uni-Modal Lock-In Phenomenon

Depending on assigned initial displacement/velocity conditions, the time histories associated with 

cross-flow (fm) and in-line (hn) displacement amplitudes are comparatively displayed in Fig. 5 

with Ur ≈ 6. It can be seen that, after some transient dynamics, the cross-flow VIV response (red 

line) reaches the steady state or “limit cycle” prior to the in-line VIV response (dashed blue line), 

with a slight phase difference between their time series. Depending on the mass and damping 
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ratios, the phase angle between cross-flow and in-line VIV has recently been evidenced by an 

experiment study of elastically-mounted rigid cylinder vibrating with two degrees of freedom 

(Jauvtis and Williamson 2004). Overall dynamic responses in Fig.5 are perfectly periodic, with 

cross-flow displacement amplitudes being greater than in-line amplitudes (Sarpkaya 2004). In 

turn, the corresponding oscillating (in-line:cross-flow) frequencies are nearly tuned in a 2:1 ratio. 

A comparison of displacement responses governing the riser and the fluid wake force is displayed 

in Fig. 6a for cross-flow VIV ( fm vs. dm) and in Fig. 6c for in-line VIV (hn vs. zn), along with the 

associated phase portraits (fm, pm) and (hn, qn) in Figs. 6b and 6d, respectively. It is shown that a 

slight phase difference between wake and riser steady-state responses occurs more apparently in 

cross-flow VIV (Fig. 6a). The closed-orbit phase plots (6b and 6d) show the passage from 

transient to steady-state motion as well as the periodicity of limit cycle, with the cross-flow 

velocity (displacement) parameter pm (fm) having smaller (larger) maximum amplitudes than the 

in-line velocity (displacement) parameter qn (hn). Overall, Figs. 6 and 7 show the fundamental 

characteristics of uni-modal wake-riser interaction which involves a single-frequency, self-

limiting, and steady-state response. 

The typical lock-in or synchronization in which cross-flow and in-line VIV occur over a wide 

range of the reduced flow velocity Ur is now highlighted, along with the predicted maximum 

response amplitudes A/D. As aforesaid through Eq. (38), Ur can be altered by either varying V, s

or m (n), which, in turn, parametrically affects Eqs. (23)-(30). For the sake of comparison, the 

results with varying V and system frequencies are presented in Figs. 7 and 8, respectively. In Fig. 

7, the flow velocity is either increased or decreased in the range 0.1 < V < 0.7 m/s (≈ 3.2x104 < Re 

< 2x105) with a small increment of 0.01 m/s. Both cross-flow and in-line VIV amplitudes are 

comparatively plotted versus Ur. It can be seen that a large A/D variation due to cross-flow (in-

line) VIV occurs in the range 4 < Ur < 7 (5 < Ur < 6), with the discontinuity of two response 

branches owing to a jump phenomenon or hysteresis effect. This highlights the lock-in 

phenomenon whereby the riser and the fluid are in the internally-resonant condition, with the 

vortex shedding frequency locking into the riser oscillation frequency (Sumer and Fredsoe 1999). 

When increasing or decreasing V, overall riser responses coincide: for the sudden jump-down and 

jump-up, critical Ur values are nearly the same. The bent-to-right exhibits a hardening behavior 

likely due to the predominant cubic nonlinearities associated with wake oscillators. The greater 

response amplitudes – as well as the broader regime of lock-in – correspond to the cross-flow 

VIV giving rise to the maximum A/D ≈ 1.426, in comparison with maximum A/D ≈ 0.779 due to 

in-line VIV. These occur albeit assuming similar properties ( J F , H G ) for cross-flow and 
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in-line VIV. Overall, the presented theoretical wake-riser interaction model provides good 

qualitative agreement with theoretical and experimental literature for cross-flow/in-line VIV, in 

view of maximum attainable amplitudes (up to A/D ≈ 2 for flexible cylinders) and the uni-modal 

lock-in prediction (Blevin 1990, Sarpkaya 2004). 

Considering now the fixed flow velocity v = 0.35 m/s and with this assumption the vortex-

excited modes are the same as in Fig. 4. By varying s or m (n) through the corresponding 

frequency detuning parameter  or within the same range of [-0.6, 1.7], similar response 

diagrams exhibiting the lock-in phenomenon are obtained in Figs. 8a (cross-flow VIV) and 8b 

(in-line VIV). The in-line vibration response and the associated lock-in bandwidth (Fig. 8b) seem 

to be more sensitive to the frequency variation. Yet, overall achievable amplitudes when varying 

s or m (n) are comparable, being approximately equal to those predicted in Fig. 7 with varying 

V. This similarity of Figs. 7 and 8 may be attributed to that the lock-in occurs in the range about 

4<Ur<7 (5<Ur<6 or 8) with 1.3 > m/s > 0.7 (2.2 > n/s > 1.7) for cross-flow (in-line) VIV, 

rather than being at m/s =1 (n/s = 2) or Ur = 5 for the stationary riser. 

A comparison of VIV responses between SCR and TTR having the same flexural tensioned-

beam parameter  ≈ 272 is now shown in Fig. 9 with the case of increasing V. From Fig. 3, the 

potentially excited modes for TTR correspond to the 3rd cross-flow (m ≈ 1.095 rad/s) and sixth 

in-line (n ≈ 2.194 rad/s) modes, whose shapes are perfectly symmetric and anti-symmetric with 

respect to middle span with three and six half-sine waves, respectively. Based on the same given 

fluid-structure parameters, empirical coefficients and initial conditions as before, the response 

comparison in Fig. 9a highlights that the cross-flow VIV of TTR entails smaller A/D (≈ 1.262) 

with respect to the cross-flow VIV of SCR (≈ 1.425). This occurs although the lock-in ranges and 

corresponding response jumps appear similar for both risers. Such predicted amplitude difference 

is attributed to the effect of riser geometry, namely the riser initial curvatures, because TTR 

(SCR) has zero (non-zero) sag and has one (two) displacement component in the cross-flow VIV. 

The cross-flow amplitudes of TTR tend to be comparable to those of straight spring-mounted 

cylinders reported in the literature. On the contrary, the in-line VIV amplitudes for both TTR and 

SCR in Fig. 9b are nearly comparable (A/D ≈ 0.76). This is physically reasonable because the in-

line modes of SCR and TTR are the same 6th mode (Fig. 4b) and the in-line VIV of SCR subject 

to flow normal to the curvature plane is not significantly affected by riser initial curvatures.   

4.2 Influence of System Parameters

First, the effect of SCR geometrical nonlinearities on the prediction of cross-flow and in-line VIV 
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responses is highlighted in Fig. 10. A beam-dominant SCR of Moe et al. (2004) is now 

considered, whose parameters are L/D ≈ 835, r = 37.62o,  ≈ 16832, b2 ≈ 2.35x109, c2 ≈ 1.2x106, 

 ≈ 21,  ≈ 0.121, SGm = SGn ≈ 0.082, F ≈ 0.432 and G ≈ 0.982. With the averaged V = 1 m/s (s

≈ 89.76 rad/s), the potentially excited cross-flow and in-line modes are the 10th in-plane (m ≈ 

82.78 rad/s) and 15th out-of-plane (n ≈ 169.35 rad/s) modes, respectively. This highlights the 

VIV at high-mode numbers. By considering either linear (omitted 2 2 3 2 2 3, , , , , ,m n m n n m n m nf h f h h f h f h ) or 

nonlinear equations of riser motion (Eqs. 23-26), the associated maximum A/D responses are 

comparatively plotted versus Ur in Fig. 10 in the case of increasing V. Overall, the jump 

phenomena are observed by both linear/nonlinear models. However, the comparison reveals 

noticeable amplitude differences in both cross-flow (Fig. 10a) and in-line (Fig. 10b) VIV, though 

based on the same assigned initial conditions. The linear model substantially overestimates the 

A/D during the lock-in. The predicted maximum cross-flow (in-line) A/D amplitudes are about 

1.13 (0.52) and 0.69 (0.42) by linear and nonlinear models, respectively. Moreover, the linear 

model neglects the hardening (bent-to-right) nonlinear effect. This highlights that the geometrical 

nonlinearities – which indeed play a crucial role in establishing a new riser equilibrium caused by 

mean drag – should be accounted for, at least, for the sake of quantitative correctness.

Next, it is interesting to understand how the vortex-excited modes having different spatial 

shapes affect the VIV responses. For the fixed  ≈ 272 (the SCR in Fig. 3), the cross-flow and in-

line VIV modes whose frequency values are in 1:2 ratio are the 1st (2nd, 3rd, 4th,…) in-plane and 

4th (6th, 8th, 10th,…) out-of-plane modes, respectively. Note that, due to the SCR in-plane 

configuration, the spatial shape profiles of odd (1st, 3rd) or even (2nd, 4th) in-plane modes are not 

perfectly anti-symmetric or symmetric (e.g., see Fig. 4a), whereas the spatial shape profiles of 

even out-of-plane modes are perfectly anti-symmetric (e.g., see Fig. 4b). With the same given 

parameters and empirical coefficients, the analysis of lock-in regime is performed in the case of 

increasing V, and the maximum A/D results are compared in Table 1 for different potentially-

excited modes. It can be seen that the in-line A/D amplitude tends to slightly change with the 

corresponding mode order. This is in contrast to the case of cross-flow VIV, where different 

excited in-plane modes entail different maximum A/D, depending on the horizontal/vertical shape 

functions affecting overall coefficients in Eqs (31)-(37). Again, such difference between cross-

flow/in-line VIV is due to the influence of initial sag or curvatures of SCR on the in-plane 

vibration. The even (2nd, 4th) modes seem to be the most dangerous case for this SCR example.

In practical design, the inclinations and sags of SCRs are variable, depending on the geometry 

(e.g., water depth, horizontal offset, seabed-free length) and the stiffness (e.g., bending and axial 
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rigidity). This, in turn, influences the beam-cable behaviour of risers. Herein, to appreciate the 

solely effect of riser sag on VIV, we now consider three SCRs having different tensioned-beam 

parameters  (Fig. 3). For the sake of comparison, the bending stiffness EI, the 2nd in-plane 

(cross-flow) and 6th out-of-plane (in-line) modes are fixed in the VIV analysis of each SCR. With 

increasing V, the predicted maximum A/D during cross-flow and in-line lock-in are comparatively 

reported in Table 2. It can be seen that both maximum cross-flow and in-line amplitudes slightly 

increase with decreasing  or increasing sag-to-span ratio. This is physically reasonable because 

the larger sagged SCR is more slender and flexible, potentially leading to larger vortex-induced 

displacements.  

The mass-damping parameter (e.g., SG) also plays a significant role in the VIV analysis and 

prediction (Sarpkaya 2004) because it affects empirical coefficients, vortex-shedding modes 

(Williamson and Roshko, 1988) and overall VIV response behaviors. As a matter of fact, many 

experimental VIV studies of elastically-mounted rigid or long flexible cylinders subject to normal 

flow depend on the measured mass and damping values. Therefore, it is worth making a 

comparison of analysis results with a series of experimental data. In Fig. 11, we compare the 

predicted maximum amplitudes during lock-in with those gathered by Skop and Balasubramanian 

(1997), by reporting 2A/D in the so-called Griffin plot (Williamson and Govardhan, 2004). Three

SG values (0.068, 0.227, 1.133) are considered for both SCRs (r = 30o) and corresponding TTRs, 

and results of the 2nd (SCRs) and 4th (TTRs) cross-flow VIV modes are displayed. In addition, the 

predicted numerical results by a frequency-domain approach Shear7 (see, e.g., Yang et al. 2008) 

are also given, based on the program recommended parameters and with two types of lift 

coefficient data (named as CL type 1 and 2). It is noted that Shear7 does not consider in-line VIV 

and, in general, the Shear7 results with CL-Type 1 provide a more conservative A/D prediction 

than those with CL-Type 2.

Overall, the maximum cross-flow amplitudes of both SCRs and TTRs decrease with increasing 

SG. This is true if the structural damping or the structural mass increases (see, e.g., Khalak and 

Williamson, 1999). It is also worth mentioning that the corresponding in-line VIV response (not 

shown herein) significantly decreases as SG increases and it possibly disappears when further 

increasing SG. For TTRs, the predicted cross-flow 2A/D amplitudes provide good qualitative, and 

possibly quantitative, agreement with Shear7 as well as experimental 2A/D amplitudes. With 

respect to literature, for instance, Moe and Overvik (1982) considered a riser based on an 

elastically-mounted rigid cylinder model and reported that, for SG = 0.23, 2A/D ≈ 2.18, whereas 

our study predicts that, for SG = 0.227, 2A/D ≈ 2.17. For SCRs, the inclined flexible cylinders 
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with sags tend to have greater 2A/D than straight cylinders such as TTRs, pivoted tubes, 

cantilevers or taut cables. The time-domain analysis with nonlinear wake oscillator seems to 

provide more conservative results for low SG parameters. This prediction needs further 

experimental confirmation based on real SCR vs. TTR measurement data, with the same 

controlled SG parameters and environmental flow conditions. 

5. CONCLUSIONS

A computationally-robust reduced-order model capable of describing the fluid-catenary riser 

interaction due to VIV has been developed. The riser model is based on the geometrically 

nonlinear equations of 3-D motion of a pinned-pinned tensioned-beam or flexural cable subject to 

a steady uniform current flow whose direction is perpendicular to the riser plane of initial 

equilibrium curvatures. The hydrodynamic model is based on the distributed nonlinear wake 

oscillators describing the fluctuating lift and drag forces corresponding to cross-flow and in-line 

VIV, respectively. Overall effects of riser bending, extensibility, sag, inclination and in-plane/out-

of-plane modal coupling through structural nonlinearities are fully taken into account. 

Parametric studies have been carried out by numerical integrations to evaluate the maximum 

response amplitudes due to cross-flow and in-line VIV. The wake-riser nonlinear dynamic 

interactions depend on the modal shape functions of vortex-excited in-plane/out-of-plane modes, 

the tensioned-beam (sag, inclination, bending or extensibility) properties, the fluid-structure (e.g., 

mass-damping, vortex/structural frequencies) parameters, the empirical wake coefficients and the 

assigned initial conditions. The obtained results highlight the occurrence of uni-modal lock-in 

when varying the reduced flow velocity parameter, along with some fundamental features of VIV. 

The comparative analysis of catenary and straight top-tensioned risers has also been 

performed. The predicted maximum amplitudes due to cross-flow (in-line) VIV of catenary riser 

are greater than (nearly comparable to) those of straight riser. This may be attributed to the 

influence of initial curvatures of catenary riser. With respect to the cross-flow VIV, the amplitude 

results provide good qualitative, as well as quantitative, agreement with experimental data of 

rigid/flexible cylinders in literature and with results by a frequency-domain approach. In some 

cases, the effect of riser geometrical nonlinearities is pronounced.

Because of the capability of predicting the uni-modal lock-in regime and associated maximum 

amplitudes due to cross-flow and in-line VIV, the presented reduced-order hydrodynamics-riser 

interaction model and analysis may be extended to account for the case of multimode VIV. These 

are theoretically and practically meaningful in actual applications where the flow is not 



19

perpendicular to the catenary riser plane of curvature and/or the flow is spatially sheared. 

Moreover, the associated development of finite element-based modeling, in conjunction with the 

improvement of nonlinear wake oscillators based on a new series of experimental measurements 

or CFD analyses of curved-pipe VIV, looks very promising. 
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Figure 1 A model of catenary riser subject to uniform current flow 
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Figure 2 Variation of empirical wake coefficients with mass-damping parameter SG 
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Figure 3 Variation of riser natural frequencies with tensioned-beam parameter ∆ 
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Figure 4 Considered (a) 2nd in-plane and (b) 6th out-of-plane modes for cross-flow and in-line 
VIV, respectively  
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Figure 5 Time histories of riser displacement coordinates and associated with cross-flow (fm, 
red solid line) and in-line (hn, blue dotted line) VIV 
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Figure 6 (a) Cross-flow VIV (solid line) and lift force (dotted line) responses, (b) In-line VIV 
(dashed line) and drag force (dotted line) responses, with corresponding phase portraits of 

riser motion (fm-pm and hn-qn) in (c) and (d) 
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Figure 7 Maximum amplitude responses due to cross-flow (circles, squares) and in-line (stars, 
triangles) VIV of SCR, with increasing V (circles, stars) or decreasing V (squares, triangles) 
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Figure 8 Maximum amplitude responses due to (a) cross-flow and (b) in-line VIV of SCR, 

with varying ωs (filled symbols) or varying ωm and ωn (open symbols) 
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Figure 9 Maximum amplitude responses due to (a) cross-flow and (b) in-line VIV: SCR 
(filled symbols), TTR (open symbols) 
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Figure 10 Maximum amplitude responses due to (a) cross-flow and (b) in-line VIV of SCR, 
with geometrically nonlinear (filled symbols) and linear (open symbols) modelling 
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Figure 11 A comparison of maximum cross-flow VIV amplitudes during lock-in of TTR and 
SCR with some experimental data and Shear7 results 
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Table 1 A comparison of maximum A/D due to cross-flow and in-line VIV for SCR with      
∆ = 272 involving different excited modes 

 

Cross-flow : In-line Modes Cross-flow A/D In-line A/D 
1 : 4 1.142 0.775 
2 : 6 1.426 0.780 
3 : 8 1.326 0.759 

  4 : 10 1.423 0.742 
 

 

Table 2 A comparison of maximum A/D due to cross-flow and in-line VIV for SCRs having 
different tensioned-beam parameters ∆ and sag-to-span ratios 

 

∆ Sag/span Cross-flow A/D In-line A/D 
200 0.162 1.389 0.787 
340 0.052 1.343 0.771 
520 0.022 1.277 0.751 

 

Tables 1-2


