239 research outputs found

    CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer’s disease

    Get PDF
    Background: The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer’s disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. / Methods: This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for Aβ1–42, Aβ1–40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. / Results: Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with Aβ1–42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. / Conclusions: Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer's disease

    Get PDF
    The identification of biochemical markers of Alzheimer's disease (AD) may help in the diagnosis of the disease. Previous studies have shown that Aβ1–42 is decreased, and tau and phospho-tau are increased in AD cerebrospinal fluid (CSF). Our own studies have identified glycosylated isoforms of acetylcholinesterase (Glyc-AChE) and butyrylcholinesterase (Glyc-BuChE) that are increased in AD CSF. Glyc-AChE is increased in APP (SW) Tg2576 transgenic mice prior to amyloid plaque deposition, which suggests that Glyc-AChE may be an early marker of AD. The aim of this study was to determine whether Glyc-AChE or Glyc-BuChE is increased in CSF at early stages of AD and to compare the levels of these markers with those of Aβ1–42, tau and phospho-tau. Lumbar CSF was obtained ante mortem from 106 non-AD patients, including 15 patients with mild cognitive impairment (MCI), and 102 patients with probable AD. Glyc-AChE, tau and phospho-tau were significantly increased in the CSF of AD patients compared to non-neurological disease (NND) controls. Aβ1–42 was lower in the AD patients than in NND controls. A positive correlation was found between the levels of Glyc-AChE or Glyc-BuChE and disease duration. However, there was no clear correlation between the levels of tau, phospho-tau or Aβ1–42 and disease duration. The results suggest that Glyc-AChE and Glyc-BuChE are unlikely to be early markers of AD, although they may have value as markers of disease progression.This work was supported by research grants from the National Health and Medical Research Council of Australia, the RL Cooper Medical Research Foundation of Australia, by a sponsored research agreement with Axonyx Inc. (New York), Innogenetics (Belgium), and by the Swedish Medical Research Council. J. S.-V. was partially sponsored by a fellowship from Navarro Tripodi Foundation of Spain and Innogentics (Belgium) and by a grant from the MCyT of Spain (Ramón y Cajal Program).Peer reviewe

    APP-derived peptides reflect neurodegeneration in frontotemporal dementia

    Get PDF
    Altres ajuts: The Catalan frontotemporal initiative (CATFI) is funded by the Health Department of the Government of Catalonia (grant PERIS SLT002/16/00408 to Alberto Lleó and Raquel Sánchez-Valle). This work was also supported by research grants from the CIBERNED Program (Program 1, Alzheimer Disease to Alberto Lleó and SIGNAL study, file://www.signalstudy.es), partly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa." This work has also been supported by a "Marató TV3" grant (20141210 to Juan Fortea, 044412 to Rafael Blesa, 20143710 to Ricard Rojas-García and 20143810 to Raquel Sánchez-Valle) and Fundación BBVA (grant to A. Lleó) and a grant from the Fundació Bancaria La Caixa to Rafael Blesa. Ignacio Illán-Gala and Sergi Borrego-Écija are supported by the Rio Hortega grant from "Acción estratégica en Salud 2013-2016" and the European Social Fund. Ignacio Illán-Gala is supported by the Global Brain Health Institute (Atlantic Fellow for Equity in Brain Health). We acknowledge all the participants in this study and all the collaborators of the SPIN cohort. We also acknowledge Soraya Torres and Laia Muñoz for technical assistance. We thank EUROIMMUN for providing Aβ1-38 and Aβ1-40 ELISA assays for this study.Objective: We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)-derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)-related syndromes, Alzheimer's disease (AD), and healthy controls. Methods: We included 214 participants with CSF available recruited at two centers: 93 with FTLD-related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid β (Aβ)1-42, Aβ1-40, Aβ1-38, and soluble β fragment of APP (sAPPβ) were centrally analyzed. We compared CSF levels of APP-derived peptides between groups and, we studied the correlation between CSF biomarkers, cortical thickness, and domain-specific cognitive composites in each group. Then, we explored the relationship between cortical thickness, CSF levels of APP-derived peptides, and regional gene expression profile using a brain-wide regional gene expression data in combination with gene set enrichment analysis. Results: The CSF levels of Aβ1-40, Aβ1-38, and sAPPβ were lower in the FTLD-related syndromes group than in the AD and healthy controls group. CSF levels of all APP-derived peptides showed a positive correlation with cortical thickness and the executive cognitive composite in the FTLD-related syndromes group but not in the healthy control or AD groups. In the cortical regions where we observed a significant association between cortical thickness and CSF levels of APP-derived peptides, we found a reduced expression of genes related to synaptic function. Interpretation: APP-derived peptides in CSF may reflect FTLD-related neurodegeneration. This observation has important implications as Aβ1-42 levels are considered an indirect biomarker of cerebral amyloidosis

    Machine learning for comprehensive forecasting of Alzheimer's Disease progression

    Get PDF
    Most approaches to machine learning from electronic health data can only predict a single endpoint. The ability to simultaneously simulate dozens of patient characteristics is a crucial step towards personalized medicine for Alzheimer’s Disease. Here, we use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to simulate detailed patient trajectories. We use data comprising 18-month trajectories of 44 clinical variables from 1909 patients with Mild Cognitive Impairment or Alzheimer’s Disease to train a model for personalized forecasting of disease progression. We simulate synthetic patient data including the evolution of each sub-component of cognitive exams, laboratory tests, and their associations with baseline clinical characteristics. Synthetic patient data generated by the CRBM accurately reflect the means, standard deviations, and correlations of each variable over time to the extent that synthetic data cannot be distinguished from actual data by a logistic regression. Moreover, our unsupervised model predicts changes in total ADAS-Cog scores with the same accuracy as specifically trained supervised models, additionally capturing the correlation structure in the components of ADAS-Cog, and identifies sub-components associated with word recall as predictive of progression

    First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays

    Get PDF
    INTRODUCTION: Reference materials based on human cerebrospinal fluid were certified for the mass concentration of amyloid beta (Aβ)1-42 (Aβ42 ). They are intended to be used to calibrate diagnostic assays for Aβ42 . METHODS: The three certified reference materials (CRMs), ERM-DA480/IFCC, ERM-DA481/IFCC and ERM-DA482/IFCC, were prepared at three concentration levels and characterized using isotope dilution mass spectrometry methods. Roche, EUROIMMUN, and Fujirebio used the three CRMs to re-calibrate their immunoassays. RESULTS: The certified Aβ42 mass concentrations in ERM-DA480/IFCC, ERM-DA481/IFCC, and ERM-DA482/IFCC are 0.45, 0.72, and 1.22 μg/L, respectively, with expanded uncertainties (k = 2) of 0.07, 0.11, and 0.18 μg/L, respectively. Before re-calibration, a good correlation (Pearson's r > 0.97), yet large biases, were observed between results from different commercial assays. After re-calibration the between-assay bias was reduced to < 5%. DISCUSSION: The Aβ42 CRMs can ensure the equivalence of results between methods and across platforms for the measurement of Aβ42
    corecore