26 research outputs found

    Distinct antibody repertoires against endemic human coronaviruses in children and adults.

    Get PDF
    Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage-immunoprecipitation sequencing. Seroprevalence of antibodies to endemic HCoVs ranged between ~4 and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2' cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and non-human coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.This work was supported in part by a grant from the Qatar National Research Fund (PPM1-1220-150017) and funds from Sidra Medicine. I Meyts is a Senior Clinical Investigator at the Research Foundation — Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies; by the KU Leuven C1 grant C16/18/007; by a VIB GC PID grant; by FWO grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. The ULB Center of Human Genetics is supported by the Fonds Erasme

    Inborn errors of type I IFN immunity in patients with life-threatening COVID-19

    No full text
    Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.0info:eu-repo/semantics/publishe

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.0info:eu-repo/semantics/inPres

    SPG43 and ALS-like syndrome in the same family due to compound heterozygous mutations of the C19orf12 gene: a case description and brief review

    No full text
    C19orf12 gene biallelic mutations lead mainly to neurodegeneration with brain iron accumulation-4. A 15-year-old male and his 17-year-old sister complained of cramps and exercise intolerance. Clinical examination of the boy mainly showed distal amyotrophy and mild weakness, while the sister predominantly had a tetrapyramidal syndrome. Widespread chronic neurogenic signs and hypointense signals on the striatum were present in both patients. Clinical exome sequencing identified, on both patients, the compound heterozygous pathogenic mutations c.204_214del p.(Gly69ArgfsTer10) and c.32C>T p.(Thr11Met). The description of these rare SPG43 and ALS-like phenotypes in the same family contributes to improve genotype-phenotype correlation in C19orf12-related diseases.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    No full text
    Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-α and/or IFN-ω are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or IFN-ω (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-β. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or IFN-ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals [removed]80 years. By contrast, auto-Abs neutralizing IFN-β do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases0info:eu-repo/semantics/publishe

    Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation.

    No full text
    To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome.info:eu-repo/semantics/publishe

    A New DARS2 Mutation Discovered in an Adult Patient

    No full text
    We report a case of an adult patient suffering from leukoencephalopathy with brainstem and spinal cord involvement and elevated white matter lactate (LBSL) caused by a DARS2 polymorphism. DARS2 mutation was identified by combining MRI and genetic analysis. Our patient was affected by compound heterozygosity for a pathogenic mutation and a common variant, but with reduced aspartyl-tRNA synthetase activity. Brain and spinal cord magnetic resonance imaging revealed extensive white matter abnormalities; spectroscopy revealed no lactate elevation. A new compound heterozygous DARS2 variant combined with a polymorphism in the other allele in an adult patient with LBSL was identified, resulting in reduced DARS2 activity. This combination is rare and has consequences on how we should consider benign variant polymorphisms in the future.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Evidence for calcitonin-producing cells in human lingual thyroids

    No full text
    Context: The thyroid contains two types of cells, the thyroid follicular cells and the calcitonin-producing cells. The site of origin of the thyroid follicular cells is the median thyroid anlage, an endothelial diverticulum in the midline of the ventral pharynx between the first and the second pharyngeal pouches. The ultimobranchial bodies (UBB), a pair of transient embryonic structures evaginated from the fourth pharyngeal pouch and located symmetrically on the sides of the developing neck, are the source of calcitonin-producing cells. In human embryos, the thyroid bud starts its migration at embryonic day 24 and reaches its final location in front of the trachea at embryonic day 45-50. The UBB fuse with the primitive thyroid when thyroid migration is completed. Lingual thyroids result from the failure of the thyroid precursor cells to migrate from the primordial pharynx to the anterior part of the neck. Therefore, calcitonin-producing cells are not expected to be present in lingual thyroids. Objective: Our objective was to determine whether calcitonin-producing C cells are present in ectopic lingual thyroids. Design, Setting, Patients, and Main Outcome Measure:Weperformed calcitonin immunolabeling and transcript detection on four flash-frozen ectopic lingual thyroids. Additional calcitonin immunolabeling was performed on two other paraffin-embedded ectopic lingual thyroids. Results: We report evidence of calcitonin-producing cells in six independent cases of ectopic lingual thyroids. Conclusion: The UBB are not the only source of calcitonin-producing cells in humans. Interactions between calcitonin-producing and thyroid follicular cells occur earlier than previously accepted. Copyright © 2012 by The Endocrine Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore