34 research outputs found

    Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TESS and CHEOPS

    Get PDF
    We report on the discovery of Gliese 12 b, the nearest transiting temperate, Earth-sized planet found to date. Gliese 12 is a bright (V = 12.6 mag, K = 7.8 mag) metal-poor M4V star only 12.162 ± 0.005 pc away from the Solar system with one of the lowest stellar activity levels known for M-dwarfs. A planet candidate was detected by TESS based on only 3 transits in sectors 42, 43, and 57, with an ambiguity in the orbital period due to observational gaps. We performed follow-up transit observations with CHEOPS and ground-based photometry with MINERVA-Australis, SPECULOOS, and Purple Mountain Observatory, as well as further TESS observations in sector 70. We statistically validate Gliese 12 b as a planet with an orbital period of 12.76144 ± 0.00006 d and a radius of 1.0 ± 0.1 R⊕, resulting in an equilibrium temperature of ∼315 K. Gliese 12 b has excellent future prospects for precise mass measurement, which may inform how planetary internal structure is affected by the stellar compositional environment. Gliese 12 b also represents one of the best targets to study whether Earth-like planets orbiting cool stars can retain their atmospheres, a crucial step to advance our understanding of habitability on Earth and across the galaxy

    Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TESS and CHEOPS

    Get PDF
    We report on the discovery of Gliese 12 b, the nearest transiting temperate, Earth-sized planet found to date. Gliese 12 is a bright (V = 12.6 mag, K = 7.8 mag) metal-poor M4V star only 12.162 ± 0.005 pc away from the Solar system with one of the lowest stellar activity levels known for M-dwarfs. A planet candidate was detected by TESS based on only 3 transits in sectors 42, 43, and 57, with an ambiguity in the orbital period due to observational gaps. We performed follow-up transit observations with CHEOPS and ground-based photometry with MINERVA-Australis, SPECULOOS, and Purple Mountain Observatory, as well as further TESS observations in sector 70. We statistically validate Gliese 12 b as a planet with an orbital period of 12.76144 ± 0.00006 d and a radius of 1.0 ± 0.1 R⊕, resulting in an equilibrium temperature of ∼315 K. Gliese 12 b has excellent future prospects for precise mass measurement, which may inform how planetary internal structure is affected by the stellar compositional environment. Gliese 12 b also represents one of the best targets to study whether Earth-like planets orbiting cool stars can retain their atmospheres, a crucial step to advance our understanding of habitability on Earth and across the galaxy

    TESS Discovery of Twin Planets near 2:1 Resonance around Early M-Dwarf TOI 4342

    Full text link
    With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase improvements to the MIT Quick-Look Pipeline (QLP) through the discovery and validation of a multi-planet system around M-dwarf TOI 4342 (Tmag=11.032T_{mag}=11.032, M∗=0.63M⊙M_* = 0.63 M_\odot, R∗=0.60R⊙R_* = 0.60 R_\odot, Teff=3900T_{eff} = 3900 K, d=61.54d = 61.54 pc). With updates to QLP, including a new multi-planet search, as well as faster cadence data from TESS' First Extended Mission, we discovered two sub-Neptunes (Rb=2.266−0.038+0.038R⊕R_b = 2.266_{-0.038}^{+0.038} R_\oplus and Rc=2.415−0.040+0.043R⊕R_c = 2.415_{-0.040}^{+0.043} R_\oplus; PbP_b = 5.538 days and PcP_c = 10.689 days) and validated them with ground-based photometry, spectra, and speckle imaging. Both planets notably have high transmission spectroscopy metrics (TSMs) of 36 and 32, making TOI 4342 one of the best systems for comparative atmospheric studies. This system demonstrates how improvements to QLP, along with faster cadence Full-Frame Images (FFIs), can lead to the discovery of new multi-planet systems.Comment: accepted for publication in A

    TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association

    Get PDF
    Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 R⊕ and 2.88 ± 0.10 R⊕ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 R⊙), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST

    TESS hunt for young and maturing exoplanets (THYME). X. A two-planet system in the 210 Myr MELANGE-5 association

    Get PDF
    Funding: P.C.T. was supported by an NSF Graduate Research Fellowship (DGE-1650116), the NC Space Grant Graduate Research Fellowship, the Zonta International Amelia Earhart Fellowship, and the Jack Kent Cooke Foundation Graduate Scholarship. A.W.M. was supported by grants from the NSF CAREER program (AST-2143763) and NASA’s exoplanet research program (XRP 80NSSC21K0393). M.G.B. was supported by an NSF Graduate Research Fellowship (DGE2040435) and the NC Space Grant Graduate Research Fellowship. F.J.P. acknowledges financial support from the grant CEX2021-001131-S funded by MCIN/AEI/ 10.13039/ 501100011033 and through projects PID2019-109522GB-C52 and PID2022-137241NB-C43. This research also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 803193/BEBOP) and from the Science and Technology Facilities Council (STFC; grant No. ST/S00193X/1). The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant T.0109.20 and by the Francqui Foundation. K.A.C. acknowledges support from the TESS mission via subaward s3449 from MIT. M.K. acknowledges support from the MIT Kavli Institute as a Juan Carlos Torres Fellow. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T.Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 R⊕ and 2.88 ± 0.10 R⊕ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 R⊙), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST.Peer reviewe

    TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association

    Get PDF
    Young (&lt;500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 R⊕ and 2.88 ± 0.10 R⊕ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 R⊙), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST

    TESS hunt for young and maturing exoplanets (THYME). III. A two-planet system in the 400 Myr Ursa major group

    Get PDF
    A.W.M. was supported through NASA's Astrophysics Data Analysis Program (80NSSC19K0583). M.L.W. was supported by a grant through NASA's K2 GO program (80NSSC19K0097). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1650116 to P.C.T. A.V.'s work was performed under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator Program grant 80NSSC19K1727.Exoplanets can evolve significantly between birth and maturity, as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<1 Gyr) offer an opportunity to probe the critical early stages of this evolution, where planets evolve the fastest. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M∗=0.99±0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23 Myr). Based on the TESS light curve and updated stellar parameters, we estimate the planet radii are 2.15±0.10R⊕ and 2.67±0.12R⊕, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than about 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating that the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation.PostprintPeer reviewe

    The LHS 1678 system : two earth-sized transiting planets and an astrometric companion orbiting an M dwarf near the convective boundary at 20 pc

    Get PDF
    Funding: The MEarth Team gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering (awarded to D.C.). This material is based upon work supported by the National Science Foundation under grants AST-0807690, AST-1109468, AST-1004488 (Alan T. Waterman Award), and AST-1616624, and upon work supported by the National Aeronautics and Space Administration under Grant No. 80NSSC18K0476 issued through the XRP Program. This work is made possible by a grant from the John Templeton Foundation. N. A.-D. acknowledges the support of FONDECYT project 3180063. TD acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. KH acknowledges support from STFC grant ST/R000824/1. E.A.G. thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant #1829740, the Brinson Foundation, and the Moore Foundation; The material is based upon work supported by NASA under award number 80GSFC21M0002. This work was supported by the lead author’s appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASAWe present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright (VJ = 12.5, Ks = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R⊕ and 0.98 ± 0.06 R⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M⊕ and 1.4 M⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung–Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.Publisher PDFPeer reviewe

    TOI-4010: A System of Three Large Short-Period Planets With a Massive Long-Period Companion

    Get PDF
    We report the confirmation of three exoplanets transiting TOI-4010 (TIC-352682207), a metal-rich K dwarf observed by TESS in Sectors 24, 25, 52, and 58. We confirm these planets with HARPS-N radial velocity observations and measure their masses with 8 - 12% precision. TOI-4010 b is a sub-Neptune (P=1.3P = 1.3 days, Rp=3.02−0.08+0.08 R⊕R_{p} = 3.02_{-0.08}^{+0.08}~R_{\oplus}, Mp=11.00−1.27+1.29 M⊕M_{p} = 11.00_{-1.27}^{+1.29}~M_{\oplus}) in the hot Neptune desert, and is one of the few such planets with known companions. Meanwhile, TOI-4010 c (P=5.4P = 5.4 days, Rp=5.93−0.12+0.11 R⊕R_{p} = 5.93_{-0.12}^{+0.11}~R_{\oplus}, Mp=20.31−2.11+2.13 M⊕M_{p} = 20.31_{-2.11}^{+2.13}~M_{\oplus}) and TOI-4010 d (P=14.7P = 14.7 days, Rp=6.18−0.14+0.15 R⊕R_{p} = 6.18_{-0.14}^{+0.15}~R_{\oplus}, Mp=38.15−3.22+3.27 M⊕M_{p} = 38.15_{-3.22}^{+3.27}~M_{\oplus}) are similarly-sized sub-Saturns on short-period orbits. Radial velocity observations also reveal a super-Jupiter-mass companion called TOI-4010 e in a long-period, eccentric orbit (P∼762P \sim 762 days and e∼0.26e \sim 0.26 based on available observations). TOI-4010 is one of the few systems with multiple short-period sub-Saturns to be discovered so far.Comment: 26 pages, 16 figures, published in A
    corecore