341 research outputs found

    Molecular cloning and biochemical characterization of a Cu,Zn-superoxide dismutase from Scedosporium apiospermum.

    Get PDF
    A Cu,Zn-superoxide dismutase has been characterized from Scedosporium apiospermum, a fungus which often colonizes the respiratory tract of patients with cystic fibrosis. Enzyme production was stimulated by iron starvation. Purification was achieved from mycelial extract from 7-day-old cultures on Amberlite XAD-16. The purified enzyme presented a relative molecular mass of 16.4 kDa under reducing conditions and was inhibited by potassium cyanide and diethyldithiocarbamate, which are two known inhibitors of Cu,Zn-SODs. Its optimum pH was 7.0 and the enzyme retained full activity after pretreatment at temperatures up to 50 degrees C. Moreover, a 450-bp fragment of the gene encoding the enzyme was amplified by PCR using degenerate primers designed from sequence alignment of four fungal Cu,Zn-SODs. Sequence data from this fragment allowed us to design primers which were used to amplify by walking-PCR the flanking regions of the known fragment. SaSODC gene (890 bp) corresponded to a 154 amino acid polypeptide with a predicted molecular mass of 15.9 kDa. A database search for sequence homology revealed for the deduced amino acid sequence 72 and 83% identity rate with Cu,Zn-SODs from Aspergillus fumigatus and Neurospora crassa, respectively. To our knowledge, this enzyme is the first putative virulence factor of S. apiospermum to be characterized

    Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma.

    Get PDF
    PURPOSE: Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS: At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel

    Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism

    Get PDF
    Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer’s disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the “post-GWAS” era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a β3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aβ peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aβ peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aβ peptide production

    Structure of Complement Component C2a: Implications for Convertase Formation and Substrate Binding

    Get PDF
    SummaryC2a provides the catalytic center to the convertase complexes of the classical and lectin-binding pathways of complement activation. We determined two crystal structures of full-length C2a, with and without a pseudo ligand bound. Both structures reveal a near-active conformation of the catalytic center of the serine protease domains, while the von Willebrand factor A-type domains display an intermediate activation state of helix α7 with an open, activated metal-ion-dependent adhesion site. The open adhesion site likely serves to enhance the affinity for the ligand C4b, similar to “inside-out” signaling in integrins. Surprisingly, the N-terminal residues of C2a are buried in a crevice near helix α7, indicative of a structural switch between C2 and C2a. Extended loops on the protease domain possibly envelop the protruding anaphylatoxin domain of the substrate C3. Together with a putative substrate-induced completion of the oxyanion hole, this may contribute to the high substrate specificity of the convertases

    Candida glabrata : a review of its features and resistance

    Get PDF
    Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Celia F. Rodrigues' grant

    Clustering of classical swine fever virus isolates by codon pair bias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated.</p> <p>Results</p> <p>The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution.</p> <p>Conclusion</p> <p>Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates.</p

    Antagonistic Changes in Sensitivity to Antifungal Drugs by Mutations of an Important ABC Transporter Gene in a Fungal Pathogen

    Get PDF
    Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette) efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications
    corecore