13 research outputs found

    Toward a digital analysis of environmental impacts on rodent mammary gland density during critical developmental windows

    Get PDF
    While mammographic breast density is associated with breast cancer risk in humans, there is no comparable surrogate risk measure in mouse and rat mammary glands following various environmental exposures. In the current study, mammary glands from mice and rats subjected to reproductive factors and exposures to environmental chemicals that have been shown to influence mammary gland development and/or susceptibility to mammary tumors were evaluated for histologic density by manual and automated digital methods. Digital histological density detected changes due to hormonal stimuli/reproductive factors (parity), dietary fat, and exposure to environmental chemicals, such as benzophenone-3 and a combination of perfluorooctanoic acid and zeranol. Thus, digital analysis of mammary gland density offers a high throughput method that can provide a highly reproducible means of comparing a measure of histological density across independent experiments, experimental systems, and laboratories. This methodology holds promise for the detection of environmental impacts on mammary gland structure in mice and rats that may be comparable to human breast density, thus potentially allowing comparisons between rodent models and human breast cancer studies

    Oncogenic Signaling Pathways in The Cancer Genome Atlas

    Get PDF
    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53 and beta-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy

    A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-\u3b2 Superfamily

    Get PDF
    We present an integromic analysis of gene alterations that modulate transforming growth factor \u3b2 (TGF-\u3b2)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-\u3b2 signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-\u3b2 ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-\u3b2 superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-\u3b2 signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-\u3b2 superfamily. To date, there are no studies of the TGF-\u3b2 superfamily of signaling pathways across multiple cancers. This study represents a key starting point for unraveling the role of this complex superfamily in 33 divergent cancer types from over 9,000 patients
    corecore