17 research outputs found

    Functional dissection of the chickpea (Cicer arietinum l.) stay-green phenotype associated with molecular variation at an ortholog of mendel’s i gene for cotyledon color: Implications for crop production and carotenoid biofortification

    Get PDF
    “Stay-green” crop phenotypes have been shown to impact drought tolerance and nutritional content of several crops. We aimed to genetically describe and functionally dissect the particular stay-green phenomenon found in chickpeas with a green cotyledon color of mature dry seed and investigate its potential use for improvement of chickpea environmental adaptations and nutritional value. We examined 40 stay-green accessions and a set of 29 BC2F4-5 stay-green introgression lines using a stay-green donor parent ICC 16340 and two Indian elite cultivars (KAK2, JGK1) as recurrent parents. Genetic studies of segregating populations indicated that the green cotyledon trait is controlled by a single recessive gene that is invariantly associated with the delayed degreening (extended chlorophyll retention). We found that the chickpea ortholog of Mendel’s I locus of garden pea, encoding a SGR protein as very likely to underlie the persistently green cotyledon color phenotype of chickpea. Further sequence characterization of this chickpea ortholog CaStGR1 (CaStGR1, for carietinum stay-green gene 1) revealed the presence of five different molecular variants (alleles), each of which is likely a loss-of-function of the chickpea protein (CaStGR1) involved in chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2–3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea

    Evaluation of the safety of C-spine clearance by paramedics: design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Canadian Emergency Medical Services annually transport 1.3 million patients with potential neck injuries to local emergency departments. Less than 1% of those patients have a c-spine fracture and even less (0.5%) have a spinal cord injury. Most injuries occur before the arrival of paramedics, not during transport to the hospital, yet most patients are transported in ambulances immobilized. They stay fully immobilized until a bed is available, or until physician assessment and/or X-rays are complete. The prolonged immobilization is often unnecessary and adds to the burden of already overtaxed emergency medical services systems and crowded emergency departments.</p> <p>Methods/Design</p> <p>The goal of this study is to evaluate the safety and potential impact of an active strategy that allows paramedics to assess very low-risk trauma patients using a validated clinical decision rule, the Canadian C-Spine Rule, in order to determine the need for immobilization during transport to the emergency department.</p> <p>This cohort study will be conducted in Ottawa, Canada with one emergency medical service. Paramedics with this service participated in an earlier validation study of the Canadian C-Spine Rule. Three thousand consecutive, alert, stable adult trauma patients with a potential c-spine injury will be enrolled in the study and evaluated using the Canadian C-Spine Rule to determine the need for immobilization. The outcomes that will be assessed include measures of safety (numbers of missed fractures and serious adverse outcomes), measures of clinical impact (proportion of patients transported without immobilization, key time intervals) and performance of the Rule.</p> <p>Discussion</p> <p>Approximately 40% of all very low-risk trauma patients could be transported safely, without c-spine immobilization, if paramedics were empowered to make clinical decisions using the Canadian C-Spine Rule. This safety study is an essential step before allowing all paramedics across Canada to selectively immobilize trauma victims before transport. Once safety and potential impact are established, we intend to implement a multi-centre study to study actual impact.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01188447">NCT01188447</a></p

    Dietary Fiber Analysis of Four Pulses Using AOAC 2011.25: Implications for Human Health

    No full text
    Chickpeas, common beans, dry peas, and lentils are pulse crops that have been a cornerstone of the human diet since the inception of agriculture. However, the displacement of pulses from the diet by low fiber protein alternatives has resulted in a pervasive deficiency referred to as the dietary fiber gap. Using an analytical method American Association of Analytical Chemists (AOAC) 2011.25 that conforms to the Codex Alimentarius Commission consensus definition for dietary fiber, the fiber content of these pulse crops was evaluated in seed types used for commercial production. These pulse crops have 2 to 3 times more fiber per 100 g edible portion than other dietary staples. Moreover, there is marked variation in fiber content among cultivars of the same crop. We conclude that pulse crop consumption should be emphasized in efforts to close the dietary fiber gap. The substantial differences in fiber content among currently available cultivars within a crop can be used to further improve gains in fiber intake without the need to change dietary habits. This provides a rationale for cultivar-based food labeling

    Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in Lens culinaris Medik.

    Get PDF
    Agromorphological traits have immense importance in breeding lentils for higher yield and stability. We studied the genetics and identified map positions of some important agro-morphological traits including days to 50% flowering, plant height, seed diameter, 100 seed weight, cotyledon color, and growth habit in Lens culinaris. Earlier developed RILs for stemphylium blight resistance (ILL-5888 × ILL-6002), contrasted for those agro-morphological traits, were used in our study. Three QTLs for days to 50% flowering were detected with additive and epistatic effects. One QTL for days to 50% flowering, QLG483 (QTL at linkage group 4 at 83 cM position), accounted for an estimated 20.2% of the variation, while QLG124 × QLG1352 and QLG484 × QLG138 accounted for 15.6% and 24.2% of the variation, respectively. Epistatic effects accounted for most of the variation in plant height, but the main effect of one QTL, QLG84, accounted for 15.3%. For seed diameter, three QTLs were detected, and one QTL, QLG482, accounted for 32.6% of the variation. For 100 seed weight, five QTLs were identified with significant additive effects and four with significant interaction effects. The main effect of one QTL, QLG482, also accounted for 17.5% of the variation in seed diameter. QLG482-83 which appears to affect days to 50% flowering, seed diameter, and 100 seed weight is flanked by RAPD markers, UBC 34 and UBC1. Growth habit and cotyledon color are controlled by single genes with prostrate dominant to erect and red cotyledon dominant to yellow. The QTL information presented here will assist in the selection of breeding lines for early maturity, upright growth habit, and improved seed quality

    Diversity and molecular determination of wild yeasts in a central Washington State vineyard

    No full text
    Yeasts were isolated from grapes collected from a research vineyard at the WSU-IAREC, located at Prosser, WA. Species determination was based on cultural features, microscopic morphology, physiological tests and analysis of ITS and D1/D2 rDNA sequence data. Fifty-three species were found distributed among five fungal subphyla, a greater number than expected based on similar published studies. Within Saccharomycotina, 13 species in the genera Candida, Hanseniaspora, Metschnikowia, Meyerozyma, Pichia, Wickerhamomyces and Yamadazyma were determined. Isolates within the Metschnikowia pulcherrima clade appeared to possess considerable diversity. Pucciniomycotina was represented by 12 species, in Curvibasidium, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces. Five phylogenetically distinct species in the subphylum could not be assigned to any described species. Isolates in Ustilaginomycotina were placed in Pseudozyma except for a single strain determined to be Rhodotorula bacarum.Within Agaricomycotina, 17 species in the genera Cryptococcus, Cystofilobasidium, Hannaella, Holtermanniella and Mrakiella were determined. Seven species of yeast-like Pezizomycotina were found, representing classes Leotiomycetes, Dothideomycetes and Sordariomycetes. Isolates of Aureobasidium pullulans represented three phylogenetically distinct subspecific lineages.Seventeen species identified in this study were previously unreported from wine grapes and 18 species were unreported from North America. Several strains appear to represent undescribed species, including the recently described Curvibasidium rogersii

    Data from: Quantitative trait loci for cold tolerance in chickpea

    No full text
    Fall-sown chickpea (Cicer arietinum L.) yields are often double those of spring-sown chickpea in regions with Mediterranean climates that have mild winters. However, winter kill can limit the productivity of fall-sown chickpea. Developing cold-tolerant chickpea would allow the expansion of the current geographic range where chickpea is grown and also improve productivity. The objective of this study was to identify the quantitative trait loci (QTL) associated with cold tolerance in chickpea. An interspecific recombinant inbred line population of 129 lines derived from a cross between ICC 4958, a cold-sensitive desi type (C. arietinum), and PI 489777, a cold-tolerant wild relative (C. reticulatum Ladiz), was used in this study. The population was phenotyped for cold tolerance in the field over four field seasons (September 2011–March 2015) and under controlled conditions two times. The population was genotyped using genotyping-by-sequencing, and an interspecific genetic linkage map consisting of 747 single nucleotide polymorphism (SNP) markers, spanning a distance of 393.7 cM, was developed. Three significant QTL were found on linkage groups (LGs) 1B, 3, and 8. The QTL on LGs 3 and 8 were consistently detected in six environments with logarithm of odds score ranges of 5.16 to 15.11 and 5.68 to 23.96, respectively. The QTL CT Ca-3.1 explained 7.15 to 34.6% of the phenotypic variance in all environments, whereas QTL CT Ca-8.1 explained 11.5 to 48.4%. The QTL-associated SNP markers may become useful for breeding with further fine mapping for increasing cold tolerance in domestic chickpea
    corecore