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a b s t r a c t

Global plant genetics research efforts have focused on developing high yielding, stress tolerant, and
disease resistant row and field crop varieties that are more efficient in their use of agronomic inputs
(water, nutrients, pesticides, etc.). Until recently, a key bottleneck in such research was the lack of
high-throughput sensing technologies for effective and rapid evaluation of expressed phenotypes under
field conditions for holistic data-driven decision making and variety selection. This review focuses on
technological aspects of integrating unmanned aerial vehicles with imaging systems to enhance field
phenotyping capabilities. The state-of-the-art of unmanned aerial vehicle technology for various appli-
cations including crop emergence, vigor, and characterization of yield potential of row and field crops has
been reviewed. The potential of using aerial imaging to evaluate resistance/susceptibility to biotic and
abiotic stress for crop breeding and precision production management has been discussed along with
future perspectives and developments.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2. Overview of small unmanned aerial vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3. Sensor integration with small UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4. Applications of high-resolution aerial sensing in field phenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1. Plant water stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2. Plant nutrient deficiency and heat stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3. Plant biotic stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4. Plant growth parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5. Crop yield potential assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6. Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5. Concluding remarks and future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

∗ Corresponding author at: Department of Biological Systems Engineering, Washington State University, PO Box 646120, Pullman, WA 99164, USA. Tel.: +1 509 335 8828.
E-mail address: sindhuja.sankaran@wsu.edu (S. Sankaran).

http://dx.doi.org/10.1016/j.eja.2015.07.004
1161-0301/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.eja.2015.07.004
http://www.sciencedirect.com/science/journal/11610301
http://www.elsevier.com/locate/eja
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eja.2015.07.004&domain=pdf
mailto:sindhuja.sankaran@wsu.edu
dx.doi.org/10.1016/j.eja.2015.07.004


S. Sankaran et al. / Europ. J. Agronomy 70 (2015) 112–123 113

1. Introduction

Accelerated crop improvement techniques are needed to satisfy
the global food production demands (Alston et al., 2009; Godfray
et al., 2010), and counter the unprecedented abiotic and biotic
stress conditions (Garrett et al., 2006; Mittler and Blumwald, 2010).
In the last 20 years, advances in DNA sequencing and molecu-
lar technologies has significantly improved knowledge of plant
genomes; however, current methods to phenotype crops remain
slow, expensive, labor-intensive, and often destructive (Furbank
and Tester, 2011; Walter et al., 2012; White et al., 2012; Cobb et al.,
2013; Dhondt et al., 2013; Fiorani and Schurr, 2013; Araus and
Cairns, 2014). Since 2010, rapid high-throughput crop phenotyping
methods or ‘phenomics’ have been discussed as an approach that
could significantly improve phenotyping efforts for plant breed-
ing (Furbank and Tester, 2011; Walter et al., 2012; White et al.,
2012; Cabrera-Bosquet et al., 2012; Dhondt et al., 2013; Fiorani
and Schurr, 2013; Yang et al., 2013; Cobb et al., 2013; Araus and
Cairns, 2014; Prashar and Jones, 2014; Deery et al., 2014). These
techniques include the application of fluorescence sensing for esti-
mating photosynthesis (Baker, 2008; Munns et al., 2010; Tuberosa,
2012), visible imaging for shoot biomass estimation (Berger et al.,
2010; Golzarian et al., 2011), visible-near infrared spectroscopy for
identifying physiological changes induced by water and nutrient
stresses (Peñuelas et al., 1994; van Maarschalkerweerd et al., 2013),
and thermal imaging for detecting water stress (Jones et al., 2009).
Field phenotyping is a critical component of crop improvement
through genetics, as it is the ultimate expression of the relative
effects of genetic factors, environmental factors, and their inter-
action on critical production traits such as yield potential and
tolerance to abiotic/biotic stresses (White et al., 2012; Araus and
Cairns, 2014). Factors such as soil characteristics, rainfall, tempera-
ture, and weather events along with the presence of disease, insect
pests, and weeds greatly influence plant performance and affect the
efficiency of selection across years. High-throughput phenotyping
methods may be able to better account for these environmen-
tal variations than current practices, thereby increasing selection
efficiency.

Both ground- and field-based platforms have been considered
for field-based phenomics (White et al., 2012; Andrade-Sanchez
et al., 2014; White and Conley, 2013; Araus and Cairns, 2014;
Prashar and Jones, 2014; Deery et al., 2014). The ground-based
sensing platforms have significant benefits, one of which is plot-
level data captured with global positioning systems (GPS) enabled
navigation and geospatial analysis. However, from a technology
development point of view, there is no unique “fit for all” ground
platform that can be used to phenotype diverse crops. The challenge
has been developing cost-effective rapid field phenotyping plat-
forms that can be adjusted in relation to row and plant spacing as
well as to account for inconsistencies in plot sizes and plant height
between different crops or different practices used by individual
programs. There are other challenges that can limit the potential
of ground-based platforms, which include (i) non-simultaneous
measurement of different plots, which can take from minutes to
hours, depending on the number of plots and plot size, (ii) com-
paction of soil, and (iii) vibrations resulting from uneven terrain
surfaces. Some of these limitations can be addressed using high-
resolution, low-altitude aerial platforms such as small unmanned
aerial vehicles (UAVs). This review examines the potential of using
low-altitude, high-resolution aerial imaging with UAVs for rapid
phenotyping of crops in the field. Overview of UAVs and sensing
systems, potential phenotypic traits that can be evaluated, and
challenges needing further research and development to support
genetics and other crop improvement programs are discussed. The
paper is organized as follows: (1) overview of small UAVs, (2)
integration of sensors with small UAVs, (3) application domain of

high-resolution aerial sensing in field phenomics, and (4) conclud-
ing remarks and future perspectives.

2. Overview of small unmanned aerial vehicles

Sensors such as thermal cameras, hyperspectral camera, multi-
spectral camera, and Light Detection and Ranging (LIDAR) systems
can be used for measuring crop growth and development (Zhang
and Kovacs, 2012) as described in the following sub-section. How-
ever, the selection of small UAVs to carry these sensors and achieve
desired temporal frequency and high spatial resolution are charac-
teristics that need to be considered before using UAVs in phenomics
research. Satellites are limited by frequency and spatial resolution.
Similarly, ground-based sensing platforms pose difficultly in being
transported from one location to another, may not be easy to gener-
ate surface maps in real time, and cannot measure plant parameters
from several plots at a time. Such difficulties can be addressed by
use of appropriate small UAVs to obtain data with desired tempo-
ral frequency and spatial resolution (Lelong et al., 2008; Araus and
Cairns, 2014).

The vehicles with flying capacity without any person onboard to
guide controls and decide direction or speed of the device are called
unmanned aerial vehicles (Eisenbeiss, 2004). Availability of UAVs
has rapidly increased in recent years and several types, ranging
from multicopters and helicopters to fixed wing, are now available
(Zhang and Kovacs, 2012; Araus and Cairns, 2014). Broadly, small
UAVs can be classified into four types: parachutes, blimps, roto-
copters, and fixed wing systems. Some of the factors influencing
the selection of these small UAVs in phenomics are summarized in
Table 1.

Selection of a specific UAV type is conditional on desired applica-
tion and limitations. Parachutes can be flown easily under no-wind
conditions, but cannot be operated under windy conditions. More-
over, they cannot hover in a single location although they have low
speeds and relatively short flight time. Blimps are commonly used
in commercial advertising; however they can also be used for aerial
imaging. Although it is possible to obtain clear images of selected
areas because of their hovering capabilities, blimps are slow to be
moved from one location to another. In addition, blimps have larger
surface area, which makes it difficult to be flown under windy con-
ditions. The most widely used small UAV types are rotocopters and
fixed wings. Rotocopters are copters that can fly at different alti-
tudes driven by four to eight propellers. This platform has several
advantages. They can hover at a given location, use GPS-based nav-
igation, fly horizontally and vertically, and require very little space
for take-off and landing. The major limitations for rotocopters are
lower speed and flight time in comparison to fixed wing types.

Fixed wing UAVs have longer flight time and faster travel
speeds than multi-rotor UAV types. Nevertheless, they do not
have hovering capability. The speed of this UAV type can result
in image blurring, which can be addressed using imaging sensors
with improved capabilities including high shutter speed. Research
is ongoing to improve the battery technology that powers the
multi-rotor and fixed wing UAVs to increase flight time. In regard
to multi-rotors, a power tethered UAV (http://www.hoverflytech.
com/livesky/) may also be a good option. Further advancements in
flight time can derive from solar-powered platforms.

3. Sensor integration with small UAVs

A range of sensors can be integrated with the UAV platforms
depending on payload lift capabilities. The sensors (Table 2) can
be based on spectral interactions between object and the elec-
tromagnetic spectrum such as reflectance or emission in visible
and infrared regions or time-of-flight of sound/light signals. The

http://www.hoverflytech.com/livesky/
http://www.hoverflytech.com/livesky/
http://www.hoverflytech.com/livesky/
http://www.hoverflytech.com/livesky/
http://www.hoverflytech.com/livesky/
http://www.hoverflytech.com/livesky/
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Table 1
Typical types of small unmanned aerial vehicles.a

Type Payloadb(kg) Flight timeb

(min)
Benefits Limitations Examplesa

Parachute 1.5 10–30 • Simple operation • Not operable in windy conditions.
• Have limited payload

HawkEye

Blimps >3.0 ∼600 • Simple operation • Not operable in windy conditions
• Have limited payload

AB1100, Cameron Fabric
Engineering

Rotocopter 0.8–8.0 8–120 • Applicable with waypoint navigation
• Hovering capabilities
• Can hold range of sensors from
thermal, multispectral to hyperspectral
cameras

• Payload may limit battery usage and
flight time

DJI Inspire, Mikrocopter ARK
OktoXL 6S12, Yamaha RMAX

Fixed wing 1.0–10 30–240 • Applicable with waypoint navigation
• Better flight time
• Multiple sensors can be mounted

• Limited hovering capacity
• Lower speeds are required for image
stitching

Landcaster Precision Hawk,
senseFly eBee

a Provided is an overview of different UAV platform types and there may be many commercial companies developing similar types.
b Approximate values taken from manufacture provided specification.

Table 2
Different types of sensors used in plant phenotype characterization.

Sensor type Details Applications Limitations Referencesa

Fluorescence sensor Passive sensing-visible and
near infrared regions

Photosynthesis,
chlorophyll, water stress

• Not developed for UAV
research yet
• Can be subject to
background noise

Chappelle et al. (1984),
Gamon et al. (1990), Flexas
et al. (2000), Evain et al.
(2004), Xing et al. (2006),
Chaerle et al. (2007)

Digital camera (RGB) Gray scale or color images
(texture analysis)

Visible properties, outer
defects, greenness, growth

• Limited to visual spectral
bands and properties

Lu et al. (2011), Kipp et al.
(2014), Klodt et al. (2015)

Multispectral
camera/color-infrared
camera

Few spectral bands for
each pixel in
visible-infrared region

Multiple plant responses to
nutrient deficiency, water
stress, diseases among
others

• Limited to few spectral
bands

Lenk et al. (2007), Moshou
et al. (2005), Blasco et al.
(2007), Svensgaard et al.
(2014), Zaman-Allah et al.
(2015)

Hyperspectral camera Continuous or discrete
spectra for each pixel in
visible-infrared region

Plant stress, produce
quality, and safety control

• Image processing is
challenging
• Sensors can be expensive

Moshou et al. (2005),
Delalieux et al. (2007),
Gowen et al. (2007), Qin
et al. (2009), Seiffert et al.
(2010)

Thermal sensor/camera Temperature of each pixel
(for sensor with
radiometric calibration)
related to thermal infrared
emissions

Stomatal conductance,
plant responses to water
stress and diseases

• Environmental conditions
affect the performance
• Very small temperature
differences are not
detectable
• High resolution cameras
are heavier

Chaerle and Van Der
Straeten (2000), Leinonen
and Jones (2004), Jones
et al. (2009), Costa et al.
(2013)

Spectrometer Visible-near infrared
spectra averaged over a
given field-of-view

Detecting disease, stress
and crop responses

• Background such as soil
may affect the data quality
• Possibilities of spectral
mixing
• More applicable for
ground-based systems

Carter (1993), Belasque
et al. (2008), Delwiche and
Graybosch (2002), Naidu
et al. (2009)

3D camera Infrared laser based
detection using
time-of-flight information

Physical attributes such as
plant height and canopy
density

• Lower accuracies
• Field applications can be
limiting

Jin and Tang (2009), Chéné
et al. (2012)

LIDAR (Light Detection and
Ranging) sensor

Physical measures
resulting from laser
(600–1000 nm)
time-of-flight

Accurate estimates of
plant/tree height and
volume

• Sensitive to small
variations in path length

Donoghue et al. (2007),
Koenig et al. (2015),
Müller-Linow et al. (2015)

SONAR (Sound Navigation
and Ranging) sensor

Sound propagation is used
to detect objects based on
time-of-flight

Mapping and
quantification of the
canopy volumes, digital
control of application rates
in sprayers or fertilizer
spreader

• Sensitivity limited by
acoustic absorption,
background noise, etc.
• Lower sampling rate than
laser-based sensing

Tumbo et al. (2002)

a Representative studies that have used specified sensor for listed applications.
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applications of time-of-flight based sensors are commonly used
for evaluating physical/morphological plant characteristics such as
plant growth, height, and canopy volume/vigor. These parameters
are important in evaluating plant performances during breeding,
and can be indicative of yield potential (Wei et al., 2010; Ilker
et al., 2013; Alheit et al., 2014; Njogu et al., 2014). In regard
to the spectroscopic and imaging techniques, a number of plant
phenotypes such as disease susceptibility, susceptibility to drought
stress, chlorophyll content, nutrient concentrations, growth rates,
and yield potential can be evaluated (Zhang and Kovacs,
2012).

The plant trait can be related to wavelength of spectral radia-
tion and amount of light energy emitted/absorbed, as sensed by
the detector in the sensing module. Fluorescence, visible, near
infrared, multi/hyperspectral, and thermal spectroscopic tech-
niques work on these principles, although each have their unique
characteristics. Such characteristics allow us to remotely sense key
plant traits. However, one of the limitations, especially for visi-
ble to near-infrared-based sensing is that changes in ambient light
conditions can influence the signal intensity (spectral reflectance
values). Therefore, it is very important to correct for the ambient
light conditions using reference calibration (e.g. Spectralon® Tar-
gets, Labsphere Inc., traceable to the National Institute of Standards
and Technology, NIST) to compensate for the light variation from
one day to another, and within a day at different time periods or due
to cloud conditions. The changes in ambient light conditions can
also be partly compensated using spectral ratios (such as vegeta-
tion indices) or a light sensor to estimate and correct for the incident
light conditions. More information on some of these sensing tech-
niques and data processing can be found in the literature (Lee et al.,
2010; Sankaran et al., 2010; Zhang and Kovacs, 2012; Deery et al.,
2014; Li et al., 2014).

4. Applications of high-resolution aerial sensing in field
phenomics

Small UAVs with suitable sensors for remote sensing of plant
responses (to induced abiotic and biotic stress) and performance
(yield) in field conditions have several benefits. The integrated
system can provide (i) better access to the field, (ii) high-resolution
data (1–2 cm depending on flying altitude), (iii) timely data collec-
tion (even under cloudy conditions), (iv) quick evaluations of the
field growth conditions, (v) simultaneous image acquisition, (vi)
self-automated flights for monitoring the plots at regular periods
in a given growing season; and (vii) low operational costs (Hunt
et al., 2008; Nebiker et al., 2008; Berni et al., 2009; Zhang and
Kovacs, 2012; Perry et al., 2012; Araus and Cairns, 2014). For exam-
ple, accessing field plots with high plant volume/biomass in the
field or immediately after irrigation is challenging and can be time
consuming. In this regard, using UAV provides higher operational
flexibility.

There are several remote sensing applications in precision agri-
culture using small UAVs. Some of those include: weed detection
(Herwitz et al., 2004; Göktoğan et al., 2010; Torres-Sánchez et al.,
2013; Rasmussen et al., 2013), aerobiological sampling (Techy et al.,
2008; Schmale et al., 2008; Gonzalez et al., 2011; Aylor et al., 2011),
leaf area index estimation (Hunt et al., 2008), soil characterization
(Sugiura et al., 2007; d’Oleire-Oltmanns et al., 2012), water sta-
tus (Sullivan et al., 2007; Berni et al., 2009; Suárez et al., 2010;
Zarco-Tejada et al., 2012; Gago et al., 2015), diseases (Garcia-Ruiz
et al., 2013; Sankaran et al., 2013; Calderón et al., 2013, 2014),
pest management (Huang et al., 2009) and yield estimation (Irmak
et al., 2000; Swain et al., 2010) among others. Some of these
applications are discussed in Zhang and Kovacs (2012). Pertinent
phenomic applications for UAVs are detailed below.

4.1. Plant water stress

Water stress occurs when the plant-available water supply is
lower than the water required by a plant species. Plant water stress
can induce stomatal closure, which decreases photosynthesis and
growth, and may exacerbate heat stress due to reduced transpira-
tional cooling. Selection for water stress tolerance and increased
water-use efficiency are core objectives in several breeding and
agronomic research programs in the world, especially in the areas
with frequent drought episodes.

Temperature can be an indicator of stomatal conductance and
response of plants to water stress (Jackson et al., 1977, 1981;
Idso, 1982). Although the use of temperature in precision agricul-
ture application has been established (Sullivan et al., 2007; Suárez
et al., 2010; Zarco-Tejada et al., 2012; Gonzalez-Dugo et al., 2013;
Gago et al., 2015), more recently, researchers are utilizing temper-
ature in leaves to determine the plant tolerance to water stress in
breeding programs. Jones et al. (2009) and Chapman et al. (2014)
demonstrated that plant temperature measurement under field
conditions can be used effectively to select new varieties with
water stress resistance traits. The authors emphasized the need
for normalizing the imaging data to account for environmental
variations in the readings. For phenotyping purposes, calibration
may not be needed because the relative differences among geno-
types are more important than the absolute data (Jones et al.,
2009).

Thermal infrared data analysis requires elimination of back-
ground temperature (soil, trunks, dead leaves) from that
attributable to leaves, especially when image pixels are bigger than
that of the leaves (Giuliani and Flore, 1999; Jones et al., 2009; Jones
and Sirault, 2014). Methods to achieve this objective include the
use of sheet backgrounds that raise the temperature more than that
of the leaves to allow easier background elimination (Giuliani and
Flore, 1999; Jones et al., 2009), determining bare soil and complete
canopy cover temperatures by a regression between temperature
and percentage of leaves present in each image pixel (Jones et al.,
2009), and masking the data over a known background tempera-
ture (Chapman et al., 2014). Nevertheless, it is necessary to compare
visible and infrared images to know the coverage percent of the
canopy (Jones et al., 2009).

Thermal infrared sensing in combination with UAVs facili-
tates scanning larger plot sizes, and may aid in selecting water
stress tolerant genotypes with less time and resources than tra-
ditional methods (Jones et al., 2009; Chapman et al., 2014). In
addition to thermal imaging, multispectral imaging can also aid
in identifying water stress tolerant and susceptible genotypes.
In Washington State University (WSU)-United States Depart-
ment of Agriculture Agricultural Research Service (USDA-ARS)
dry bean study, 20 most tolerant and 20 most susceptible
recombinant inbred lines of dry bean were compared under
terminal drought conditions (Trapp, 2015). The 40 lines (vari-
eties) were planted in a randomized complete block design with
two replications of non-stress and drought stress treatments.
Aerial, high-resolution multispectral images were acquired at early
mid-pod set (growth stage) and expected to have maximum growth
vigor (Fig. 1a). Plot-to-plot comparison of the modified green nor-
malized difference vegetation index (GNDVI, green as visible band)
estimates with that of the yield data (plot-to-plot comparison),
resulted in a strong correlation with correlation coefficient of 0.79
(p = 0.01, Fig. 1b). The GNDVI is vegetation index similar to nor-
malized difference vegetation index (NDVI), where green band is
used instead of red bands as in NDVI. The GNDVI can be more
sensitive to wide range of chlorophyll concentrations than NDVI
(Gitelson and Merzlyak, 1998). In addition, there was a strong asso-
ciation in both non-stress and drought stress conditions, with both
susceptible and tolerant dry bean varieties showing a significant
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Fig. 1. UAV-based sensing of dry bean plant responses to water stress. (a) False color multiband image (NIR, G, B as RGB bands) of dry bean variety plots under irrigated
control and drought stress treatments showing differences in crop canopy densities (note: compaction bands across the plots due to wheel tracks are more visible in drought
stress plots, marked in dotted line box), and (b) plot-to-plot comparison of GNDVI ([NIR − G]/[NIR + G]) estimated from image data with that of individual plot yield data. The
correlation coefficient (r) is inclusive of both treatments (control and drought).

correlation between NDVI and yield performance under both con-
ditions (p = 0.01).

The limited plant growth (biomass) due to water stress can
typically be assessed using visible to near-infrared imaging. Impor-
tantly, periodic thermal and visible to near-infrared imaging
throughout the crop growing season can provide vital qualitative
and quantitative data that can be related to ground-truth mea-
surements. These approaches will result in developing robust
high-throughput non-contact sensing methods for evaluating
plant traits and may eventually replace standard data collection
methods.

4.2. Plant nutrient deficiency and heat stress

UAV-based sensing systems are rapid and efficient techniques to
evaluate growth, yield and adaptation to stress in plants (Cabrera-
Bosquet et al., 2012). Genotypes of most crop species show
quantitative variation for abiotic stress tolerances, and differences
in nutrient- and water-use efficiencies. Although it is possible to
detect differences in crop performance under different stress con-
ditions (Fiorani and Schurr, 2013), more detailed research is needed
to determine plant responses using real-time automated and non-
destructive sensing technology. Research is needed to understand
and modulate sensors that can detect and resolve specific abiotic
stresses such as nutrient, salinity, and heat.

Nutrient deficiency can result in visual symptoms such as lower
chlorophyll content, lower growth rate, tissue necrosis, and higher
disease susceptibility (DeTurk, 1941). These factors can be evalu-
ated using UAV-based sensing techniques with relative ease (Zhu

et al., 2009; Agüera et al., 2011; Kaivosoja et al., 2013; Cilia et al.,
2014; Li et al., 2015). In a low nitrogen application study in maize
(Zaman-Allah et al., 2015) with multispectral camera mounted in
UAV, a good correlation between nitrogen stress index and grain
yield with r of 0.40–0.79 was achieved (p ≤ 0.05) with multiple N
treatments. The crop senescence index was also correlated with the
NDVI values (r = 0.84, p ≤ 0.01). The study indicated the potential of
UAV-based sensing in field phenotyping, with well-developed data
processing procedures and data management.

The evaluation of crop varieties resilient to salinity and heat
stress can also be assessed efficiently using UAV-based sensing. In
the case of salinity and heat stress, osmotic stress leads to stomatal
closure, decreased stomatal conductance, increased leaf temper-
ature (Bowman and Strain, 1988; Wang et al., 2003; Microbes,
2015), and decreased photosynthesis. These changes in photosyn-
thetic rates and stomatal conductance can be detected by visible
to near-infrared spectral reflectance (Stong, 2008). Thermal imag-
ing can also be used to detect plant primary responses to salinity
and water stress as the temperature increases due to stomatal clo-
sure (Leinonen and Jones, 2004; Jones et al., 2009; Costa et al.,
2013).

Image acquisition systems mounted on small UAVs are widely
used in crop mapping for stress detection, due to their ability
to acquire images at high spatial, spectral, and temporal resolu-
tions (Adams et al., 2000; Berni et al., 2009). Hairmansis et al.
(2014) conducted an image-based study to detect salinity tolerance
for two varieties of rice (IR64 and Fatmawati). They successfully
used Red-Green-Blue (RGB) and fluorescence imaging, to sense tis-
sue ion concentration, to differentiate between ionic and osmotic
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stages of salinity stress and identify the genetic basis of salin-
ity tolerance. Similarly, thermal images in combination with RGB
imaging have been used to study canopy temperature changes
in response to stomatal behavior and water deficit with data
from Vicia faba L. and Vitis vinifera L. grown in greenhouse and
field conditions (Leinonen and Jones, 2004). Effect of tempera-
ture was calculated assuming air temperature, active radiation,
and relative humidity. Such crop sensing tools integrated with
UAVs have potential for high-throughput crop phenotyping and
management applications in horticulture and field crops. Deriving
crop specific indicators (spectral signatures) for the above stress-
ors to facilitate the development of specific, lightweight sensing
modules to be integrated with UAVs remains a key challenge and
opportunity.

4.3. Plant biotic stress

The UAV-based disease management has three major applica-
tions: (i) assessing the pest/disease development and symptoms
(Yue et al., 2012; Garcia-Ruiz et al., 2013; Sankaran et al., 2013), (ii)
assessing and monitoring the pathogen in atmosphere (Gonzalez
et al., 2011; Aylor et al., 2011), and (iii) precision spraying (Cao et al.,
2013; Faiçal et al., 2014). Evaluating the susceptibility of different
plant varieties to diseases caused by soil-borne fungal pathogens,
nematodes, viruses, air-borne or vector-based fungal or bacterial
infections is a promising application. Remote sensing technologies
have been used for identifying and monitoring diseases (Nilsson,

1995; Kumar et al., 2012; Li et al., 2012; Usha and Singh, 2013). But,
the application of UAV-based sensing for evaluating disease sever-
ity, and susceptibility of different varieties to diseases is relatively
undeveloped.

A recent study on evaluating sugar beet varieties for Cer-
cospora resistance indicated that simple vegetation indices such as
normalized difference vegetation index (NDVI), leaf water index
(LWI) and Cercospora Leaf Spot Index (CLSI) could be correlated with
disease severity (Jansen et al., 2014). In WSU’s ongoing study, 20
(Russets) and 30 (20 Russets + 10 Chip and Specialty) potato selec-
tions/lines were screened with two replications to identify varieties
resistant and susceptible to viral (potato virus Y) and early die
(Verticillium wilt) diseases, respectively. An aerial, high-resolution
multispectral image was used to estimate the canopy vigor (leaf
area) in terms of number of green pixels using GNDVI image, after
thresholding. A correlation with r of about 0.58–0.80 (Fig. 2) was
achieved when the estimated leaf area data of diseased plots at 40
days after planting were compared with the potato yield data. Simi-
larly, susceptibility to pathogen infections in plants can be assessed
effectively using UAV-based sensing without any bias or misinter-
pretations.

Several researchers have used UAV-based sensing for disease
monitoring in tree fruit production (Calderón et al., 2013, 2014;
Garcia-Ruiz et al., 2013). A multispectral imaging sensor with six
different spectral bands (530, 610, 690, 740, 850 and 900 nm)
was used to detect Huanglongbing (HLB) infected trees in a cit-
rus orchard. High-resolution multispectral images (5.5 cm/pixel)
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Fig. 2. Plot-by-plot comparison of UAV imaging-based canopy vigor at 40 days after planting and potato yield data in the field plots with (a) early die and (b) potato virus Y
infections. The canopy vigor was estimated as total number of green pixels after thresholding using GNDVI image to remove background.
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Fig. 3. (a) GNDVI pseudocolor image of chickpeas field plots imaged from 30 m altitude, and (b) relationship between image-based canopy vigor and yield at 31 days and 66
days after planting of 24 plots shown in (a). The four plots in the right represent border rows. The colors are assigned based on the GNDVI scale, for better visualization of
image data. The canopy vigor was estimated as total number of green pixels after thresholding using GNDVI image to remove background.

with a suitable classification algorithm (support vector machine)
could be used for identifying HLB-infected trees with up to
85% accuracy. Amongst the different spectral bands, 710 nm pro-
vided the most useful information. Similarly, Verticillium wilt
in olive orchards was detected using high-resolution airborne
hyperspectral and thermal imaging techniques (Calderón et al.,
2013). Thermal data and Photochemical Reflectance Index (PRI)
were significantly correlated with disease severity. Similar tech-
niques can be applied to evaluate disease severity in breeding
programs.

4.4. Plant growth parameters

UAV-based sensing can also be used for evaluating plant growth
parameters such as emergence (Sankaran et al., 2014), vigor, leaf
area index (Hunt et al., 2010; Sugiura et al., 2005), and biomass.
A recent study (Sankaran et al., 2014) evaluated emergence and
spring stand after overwintering using GNDVI. Aerial multispectral
images of field plots were acquired to estimate GNDVI. Correlation
between ground-truth emergence and spring stand ratings data,
and image-based data was 0.86 (p < 0.0001). The technique was
useful to identify winter wheat varieties that showed good emer-
gence after planting combined with good winter hardiness, which
are important traits in the U.S. Pacific Northwest wheat production
regions.

In WSU-USDA-ARS chickpea trail, the chickpea plots were
imaged at 31 days and 66 days after planting. The chickpeas
were planted (randomized complete block design) at a density
of 43 seeds m−2 in a 1.5 m × 6.1 m block (≈430,000 seeds ha−1). As
the remote sensing images were acquired in early growth stages,
an altitude of 30 m was selected (Fig. 3a). A good correlation was
established between canopy vigor (total number green pixels after
thresholding with GNDVI image) and yield potential, especially
for images acquired at 66 days after planting (Fig. 3b). Interest-
ingly, the r between number of plants manually counted at 27 days
after planting and the image-based leaf area (number of pixels)
at 31 days after planting was 0.66; and r between manual plant
count and the yield was 0.21. Similarly, GNDVI estimates extracted
from a UAV-based multispectral camera were compared with leaf
area index (LAI) from winter wheat field plots (Hunt et al., 2008,
2010). Variable nitrogen application treatments resulted in LAI dif-
ferences. A good relationship between NDVI values and LAI was
reported (R2 = 0.85). One of the limitations of using NDVI for esti-
mating LAI could be that the NDVI saturates when canopies are
greener (i.e. higher NDVIs).

Another important trait that can be evaluated using UAV-based
imaging is plant maturity (Trapp, 2015; Khot et al., 2014). For
several crops such as chickpeas, dry beans, and potatoes, plant
maturity (degree of foliar senescence) is an important character-
istic for variety selection. Similarly, other growth parameters such
as number of emerging plants to assess planting accuracy, efficacy
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of germination-enhancing plant growth regulators, and genotypic
differences can also be evaluated. Fig. 4 shows an example of emer-
gence study in potatoes.

4.5. Crop yield potential assessment

Most breeding efforts for row and field crops have focused on
developing high yielding varieties that are resistant to disease,
more efficient in their use of agronomic inputs, and can tolerate
moderate levels of abiotic stressors. Plant flowering date (Marais,
1985; Guo et al., 2015), number of heads (seeds) per plant, and size,
volume, and weight at seeds/plant at harvest (Huddleston, 1978;
Giri and Schillinger, 2003) of selected genotypes and check varieties
are common plant traits measured to establish yield potential of
the new lines. Aerial platforms with adequately equipped portable
multispectral sensors can critically aid in evaluating the yield
potential of new lines and quantification of larger field plots, which
has been the limitation of ground-based physical assessments.
Recent studies have used aerial imaging-derived vegetative indices
(as summarized in Table 3) to estimate the yield potential of row
and field crops.

Although still evolving, periodic high resolution spectral
imaging throughout the growing season will help in developing
rapid yield estimation techniques as needed in crop phenotype
characterization. In WSU’s recent study (Khot et al., 2014), the
periodic aerial images using multispectral sensor captured winter
survival and spring stand of winter wheat breeding lines as part of
ongoing wheat breeding efforts. The study successfully correlated
the GNDVI image estimates of winter survival and spring stand to
actual plot yield, with Pearson correlation coefficient in the ranges
of 0.60–0.71 (Fig. 5). UAV-based multispectral imaging could not
only be capable of estimating yield potential for breeding studies
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Fig. 5. Plot-to-plot correlation between the image-based canopy vigor representing
spring stand and yield (kg/ha) in winter wheat variety field plots acquired from UAV-
based multiband image from 100 m. The canopy vigor was estimated as average
number of green pixels after thresholding to remove background.

but potentially can be used by growers for predicting yield and
thus, market value of their crop.

4.6. Other applications

UAV-based sensing technology can be applied to evaluate
a number of other plant growth traits such as plant height,
row width (plant vigor), canopy closure, etc. In addition, herbi-
cide tolerance/injury, mineral deficiencies or toxicities (e.g. iron,
boron, aluminum), and insect pest damage can also be eval-
uated. Moreover, the influence of other factors such as soil

Fig. 4. UAV imagery-based potato emergence 37 days after planting (images were acquired from 15 m altitude). (a) False color multiband image (R, G, NIR as RGB bands),
(b) NDVI image in grayscale, and (c) pseudocolor image for better data visualization.
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Table 3
Examples of aerial (manned and unmanned) imaging based vegetative indices for yield estimation in row and field crops.

Crop Sensing details Yield ≈ f (VIs) References

Wheat (33
genotypes)

Platform: Cessna 172 (manned)
Sensors: Canon F1 & Kodak 2236
Infrared filter (Wratten no. 12 gelatin filter)
Resolution: 1: 6000 at 304 m altitude
Imaging interval: 2 flights (weeks) June–July
Analysis software: ERDAS

Later growth stage: NDVI
R2: 0.11–0.47

Ball and Konzak (1993)

Cotton Platform: – (manned)
Sensors: Vis and NIR hyperspectral sensor (OKSI, Inc.)
430–1012 nm with 10-nm bandwidth
Resolution: 1 m/pixel
Imaging interval: 12 flights (15 days) June–October
Analysis software: ENVI 3.6

Early growth stage: RDVI,
MTVI, OSAVI
Later growth stage: MCARI,
TCARI
R: 0.09–0.61

Zarco-Tejada et al.
(2005)

Wheat (17
genotypes)

Platform: Power glider (L’Avion Jaune) & Pixy (ABS-Aeroligt)
Sensors: 3 channel Canon EOS350D and 4 channel Sony DSC-F828 with custom
filters
Resolution: 5 cm/pixel at 20–100 m
Imaging interval: 6 flights February–June
Analysis software: –

Early and later growth
stage: LAI ≈ f (NDVI)
RSE: 0.57

Lelong et al. (2008)

Rice Platform: X-Cell Fury 91, Miniature Aircraft, Billings, MT
Sensors: 3 channel Tetracam ADC
Resolution: 0.71 m/pixel at 20 m
Imaging interval: 65 days after planting
Analysis software: Pixelwrench

Mid growth stage: NDVI
R2: 0.76

Swain et al. (2010)

Potato Platform: Piper Seneca
Sensors: Kodak Megaplus 4.2i cameras customized for green, red, NIR bands
Resolution: 1 m
Imaging interval: 3 flights (monthly) July–August
Analysis software: ERDAS

Later growth stage: SAVI,
NDVI
R2: 0.81

Sivarajan (2011)

Corn Platform: customized E-Trainer 182 (Graupner GmbH)
Sensors: Mono-lithic miniature spectrometer MMS1 (Carl Zeiss GmbH)
310–1100 nm (optimized to 360–900 nm)
Resolution: 8–100 m altitude
Imaging interval: 3 flight (monthly) August–October
Analysis software: ArcGIS (ESRI). SigmaStat 3.5 (Dundas Software, Ltd.)

Early and soft dough stages:
740/730, 760/730
R2: 0.15–0.19

Link et al. (2013)

Wheat (112
genotypes)

Platform: – (manned)
Sensors: 6 channel multispectral camera
Resolution: 0.3 m/pixel at 300 m altitude
Imaging interval: 6 flights (weekly) March–April
Analysis software: –

Later growth stage: RDVI,
TCARI, OSAVI, MCARI and
GM1, NDVI
R: −0.70 to 0.73

Rodrigues et al. (2014)

RDVI, Randomized Difference Vegetation Index; MTVI, Modified Triangular Vegetation Index; OSAVI, Optimized Soil-Adjusted Vegetation Index; MCARI, Modified Chlorophyll
Absorption Index; TCARI, Transformed Chlorophyll Absorption Index; NDVI, Normalized Difference Vegetative Index, GM1, Gitelson and Merzlyak; LAI, Leaf Area Index; RSE,
Root Square Error; SAVI, Soil Adjusted Vegetation Index.

Table 4
Summary of UAV-sensing based plant traits estimation in prior studies.

Phenotypic trait Standard method UAV-based sensing method References

Plant height Measuring scale LIDAR system. Technology is in
developmental scale, although UAV-based
systems are available. Important to know
the elevation of the terrain. 3D
construction could be another possibility.

Merz and Chapman (2011),
Zarco-Tejada et al. (2014)

Plant biomass
Plant emergence

Visual rating; destructive
sampling; Plant count

Visible-near infrared imaging to measure
canopy coverage.

Chapman et al. (2014),
Sankaran et al. (2014), Khot
et al. (2014)

Plant senescence Visual rating Visible to near-infrared imaging to
measure plant greenness.

Adamsen et al. (1999)a,
Khot et al. (2014)

Plant flowering Visual observation Visible imaging to estimate number of
flowers.

Thorp and Dierig (2011)a,
Granados et al. (2013)a

Water stress; stomatal
conductance; Heat stress,
salinity stress

Visual rating, soil moisture
measurements, porometer

Visible, near and thermal infrared imaging
to measure canopy temperature and water
absorption bands. Plant growth can also be
related to abiotic stress.

Zarco-Tejada et al. (2012)

Nutrition Foliar and/or petiole
nutrient analyses

Visible-near infrared imaging to estimate
leaf nitrogen, and potentially other
nutrients.

Jia et al. (2004)*,
Lebourgeois et al. (2012)

Leaf area index Destructive sampling,
plant canopy analyzer

Visible-near infrared imaging to estimate
plant biomass and coverage. May get
saturated with LAI.

Hunt et al. (2010), Sugiura
et al. (2005)

Disease susceptibility Visual disease rating Visible-near infrared imaging for assessing
plant health/damage. Similar techniques
can be applicable for toxicity studies.

Di Gennaro et al. (2012),
Jansen et al. (2014)

a Non-UAV studies. The techniques can be integrated with low-altitude UAV-based sensing.
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compaction (Fig. 1), field anomalies due to past production prac-
tices (e.g. saline and low nutrient zones), presence of weeds, and
soil variability can also be easily assessed using aerial imaging.
Table 4 summarizes some of the potential sensing methods for
evaluating plant traits important for breeding lines and variety
selection.

5. Concluding remarks and future perspective

The successful implementation of UAVs for field phenotyping
depends on two major factors. The first factor is the charac-
teristics of the UAV such as stability, safety, control, reliability,
positioning, autonomy, sensor mount, and controller. The sec-
ond important factor is the sensor characteristics such as specific
spectral wavelengths, resolution, weight, calibration, and field
of view. The UAV operation is often limited by sensor pay-
load (size/weight), operating altitude (regulatory issues), and
flight time (Ma et al., 2013; Deery et al., 2014). However,
the above aspects of UAV technologies are rapidly improv-
ing. In addition, an alternative flight time solution could be
using a powered tether to the UAV that would provide a
continuous source of power, and also satisfy the regulatory require-
ments, especially in the United States. The U.S. Federal Aviation
Administration (FAA) is currently developing rules and regu-
lations to ensure privacy, safety, and security; while allowing
UAV applications in agriculture. Another important aspect of
UAV-based phenomics applications is the development of data-
processing algorithms or tools to convert the sensory data into
useful phenotypic data for variety selection and plant growth in
general. Image blur and geometric distortion corrections (Xiang
and Tian, 2011; Zhang and Kovacs, 2012), image stitching, geo-
referencing, and automated feature extraction capabilities need to
be improved to utilize the full potential of UAV technologies in
phenomics research.

In summary, UAV provides an opportunity for high-throughput
phenotyping of crops, thus addressing a current ‘bottleneck’ in the
selection of superior genotypes in breeding and variety develop-
ment programs. UAV can significantly accelerate the selection of
high-yielding crop varieties that are more efficient in their use of
agronomic inputs and with significant resistance to biotic and abi-
otic stress. We predict that the use of UAV-based technology will
grow exponentially in the next few years, resulting in the devel-
opment of robust aerial sensing-based crop phenotyping methods
available to the plant breeders and the research community
at large.
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