401 research outputs found
Feasibility, acceptability and efficacy of a web-based computer-tailored physical activity intervention for pregnant women - the Fit4Two randomised controlled trial
Background: Physical activity (PA) during pregnancy is associated with a variety of health benefits including a reduced risk of pregnancy related conditions such as pre-eclampsia and pregnancy-induced hypertension and leads to greater control over gestational weight gain. Despite these associated health benefits, very few pregnant women are sufficiently active. In an attempt to increase health outcomes, it is important to explore innovative ways to increase PA among pregnant women. Therefore, the aim of this study was to assess the feasibility, acceptability and efficacy of a four week web-based computer-tailored PA intervention among pregnant women. Methods: Seventy-seven participants were randomised into either: (1) an intervention group that received tailored PA advice and access to a resource library of articles relating to PA during pregnancy; or (2) a standard information group that only received access to the resources library. Objective moderate-to-vigorous physical activity (MVPA) was assessed at baseline and immediately post-intervention. Recruitment, attrition, intervention adherence, and website engagement were assessed. Questions on usability and satisfaction were administered post-intervention. Results: Feasibility was demonstrated through acceptable recruitment (8.5 participants recruited and randomised/ month), and attrition (25%). Acceptability among intervention group participants was positive with high intervention adherence (96% of 4 modules completed). High website engagement (participants logged in 1.6 times/week although only required to log in once per week), usability (75/100), and satisfaction outcomes were reported in both groups. However, participants in the intervention group viewed significantly more pages on the website (p < 0.05), reported that the website felt more personally relevant (p < 0.05), and significantly increased their MVPA from baseline to postintervention (mean difference = 35.87 min), compared to the control group (mean difference = 9.83 min) (p < 0.05), suggesting efficacy. Conclusions: The delivery of a computer-tailored web-based intervention designed to increase PA in pregnant women is feasible, well accepted and associated with increases in short-term MVPA. Findings suggest the use of computer-tailored information leads to greater website engagement, satisfaction and greater PA levels among pregnant women compared to a generic information only website. Trial registration: The trial was ‘retrospectively registered’ with the Australian New Zealand Clinical Trials RegistryMelanie Hayman, Peter Reaburn, Matthew Browne, Corneel Vandelanotte, Stephanie Alley and Camille E. Shor
Individual characteristics associated with physical activity intervention delivery mode preferences among adults
BACKGROUND People have different preferences on how health behaviour change interventions are delivered to them; intervention implementation, retention and effectiveness may be improved if preferences can be matched. PURPOSE This study aims to explore factors related to preference of face-to-face, and group-, print- or web-based physical activity intervention delivery modes among adults recruited from the general population. METHODS A question relating to physical activity intervention preference was included in the telephone administered 2010 Queensland Social Survey. Multinomial regression models were used to explore socio-demographic (e.g., age, marital status, location), health (e.g., BMI, chronic disease status) and behavioral factors (e.g., internet use, physical activity, diet, social networking) related to intervention preferences, using ‘a face-to-face intervention’ as the reference category. RESULTS 35.2% of those approached took part in the telephone interviews (n = 1,261). Preference for a web-based intervention was positively associated with being in the 35–44 age group (compared to the 18–34 age group; RR = 2.71), living in a rural area (RR = 2.01), and high internet use (RR = 1.03); and negatively associated with female gender (RR = 0.52), obesity (RR = 0.42), and higher physical activity participation (RR = 0.99). Preference for a print-based intervention was positively associated with older age (RR = 5.50); and negatively associated with female gender (RR = 0.48) and obesity (RR = 0.47). Preference for a group-based program was positively associated with living in a regional town (RR = 1.48) and negatively associated with being separated (RR = 0.45) and obesity (RR =0.56). CONCLUSION Findings from this study help to delineate what physical activity intervention delivery modes are likely to be appealing for specific target groups, especially in relation to people of different weight status, age, gender and living environment. As such, this information will be useful in the development of interventions targeted at these groups.Camille E Short, Corneel Vandelanotte and Mitch J Dunca
Designing engaging online behaviour change interventions: a proposed model of user engagement
Camille E. Short, Amanda L. Rebar, Ronald C. Plotnikoff, Corneel Vandelanott
Automatic evaluation stimuli - the most frequently used words to describe physical activity and the pleasantness of physical activity
Physical activity is partially regulated by non-conscious processes including automatic evaluations - the spontaneous affective reactions we have to physical activity that lead us to approach or avoid physical activity opportunities. A sound understanding of which words best represent the concepts of physical activity and pleasantness (as associated with physical activity) is needed to improve the measurement of automatic evaluations and related constructs (e.g., automatic self-schemas, attentional biases). The first aim of this study was to establish population-level evidence of the most common word stimuli for physical activity and pleasantness. Given that response latency measures have been applied to assess automatic evaluations of physical activity and exercise, the second aim was to determine whether people use the same behavior and pleasant descriptors for physical activity and exercise. Australian adults (N = 1,318; 54.3% women; 48.9% aged 55 years or older) were randomly assigned to one of two groups, through a computer-generated 1:1 ratio allocation, to be asked to list either five behaviors and pleasant descriptors of physical activity (n = 686) or of exercise (n = 632). The words were independently coded twice as to whether they were novel words or the same as another (i.e., same stem or same meaning). Intercoder reliability varied between moderate and strong (agreement = 50.1 to 97.8%; κ = 0.48 to 0.82). A list of the 20 most common behavior and pleasantness words were established based on how many people reported them, weighted by the ranking (1-5) people gave them. The words people described as physical activity were mostly the same as those people used to describe exercise. The most common behavior words were 'walking,' 'running,' 'swimming,' 'bike riding,' and 'gardening'; and the most common pleasant descriptor words were 'relaxing,' 'happiness,' 'enjoyment,' 'exhilarating,' 'exhausting,' and 'good.' These sets of stimuli can be utilized as resources for response latency measurement tasks of automatic evaluations and for tools to enhance automatic evaluations of physical activity in evaluative conditioning tasks.Amanda L. Rebar, Stephanie Schoeppe, Stephanie J. Alley, Camille E. Short, James A. Dimmock, Ben Jackson, David E. Conroy, Ryan E. Rhodes and Corneel Vandelanott
Evaluating a web-based computer-tailored physical activity intervention for those living with and beyond lung cancer (ExerciseGuide UK): protocol for a single group feasibility and acceptability study
Background: Lung cancer is the leading cause of cancer-related death globally. Physical activity and exercise provide unequivocal benefits to those living with and beyond lung cancer. However, few of those living with and beyond cancer meet the national physical activity guidelines. Various barriers exist for this population’s engagement in physical activity and exercise, such as the lack of knowledge and lack of tailored information, little access to exercise specialists, fatigue, and mobility challenges. Digitally delivered programmes have the potential to address several of these barriers, with techniques like “computer-tailoring” available to enable the delivery of tailored content at a time and place that is convenient. However, evaluation of such programmes is needed prior to implementation. This protocol describes a single group study that will examine the feasibility and acceptability of an online tool (ExerciseGuide UK) that provides those living with and beyond lung cancer web-based computer-tailored physical activity prescription and modules underpinned by behaviour change theories. Methods: Thirty-five individuals diagnosed with lung cancer, or cancer affecting the lung (e.g. pleural mesothelioma), will be recruited into a single-intervention arm. The platform will provide tailored resources and a personalised physical activity programme using IF-THEN algorithms. Exercise prescription will be tailored on factors such as self-reported specific pain location, exercise history, and current physical fitness. In addition, modules grounded in behaviour change will supplement the physical activity programme and will focus on topics such as exercise benefits, safety, goal setting, and tracking. The primary outcome will be assessed using pre-established criteria on feasibility and mixed-methods approach for acceptability. Secondary outcomes will explore changes in the physical activity, quality of life, anxiety, and depression. Discussion: This manuscript describes the protocol for a study examining the feasibility and acceptability of a web-based computer-tailored physical activity intervention for those living with and beyond lung cancer. The publication of this protocol aims to increase the transparency of the methods, report pre-determined criteria, and aid replication of the study and associated materials. If feasible and acceptable, this intervention will inform future studies of digital-based interventions. Trail registration: ClinicalTrails.gov, NCT05121259. Registered on November 16, 2021
Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: A randomized controlled trial using web 2.0 applications to promote physical activity.
OBJECTIVE: To describe in detail the recruitment methods and enrollment rates, the screening methods, and the baseline characteristics of a sample of adults participating in the Walk 2.0 Study, an 18 month, 3-arm randomized controlled trial of a Web 2.0 based physical activity intervention. METHODS: A two-fold recruitment plan was developed and implemented, including a direct mail-out to an extract from the Australian Electoral Commission electoral roll, and other supplementary methods including email and telephone. Physical activity screening involved two steps: a validated single-item self-report instrument and the follow-up Active Australia Questionnaire. Readiness for physical activity participation was also based on a two-step process of administering the Physical Activity Readiness Questionnaire and, where needed, further clearance from a medical practitioner. RESULTS: Across all recruitment methods, a total of 1244 participants expressed interest in participating, of which 656 were deemed eligible. Of these, 504 were later enrolled in the Walk 2.0 trial (77% enrollment rate) and randomized to the Walk 1.0 group (n = 165), the Walk 2.0 group (n = 168), or the Logbook group (n = 171). Mean age of the total sample was 50.8 years, with 65.2% female and 79.1% born in Australia. CONCLUSION: The results of this recruitment process demonstrate the successful use of multiple strategies to obtain a diverse sample of adults eligible to take part in a web-based physical activity promotion intervention. The use of dual screening processes ensured safe participation in the intervention. This approach to recruitment and physical activity screening can be used as a model for further trials in this area
Validity and responsiveness to change of the Active Australia Survey according to gender, age, BMI, education, and physical activity level and awareness
© 2019 The Author(s). Background: This study aimed to investigate the validity of the Active Australia Survey across different subgroups and its responsiveness to change, as few previous studies have examined this. Methods: The Active Australia Survey was validated against the ActiGraph as an objective measure of physical activity. Participants (n = 465) wore the ActiGraph for 7 days and subsequently completed the Active Australia Survey. Moderate activity, vigorous activity and total moderate and vigorous physical activity were compared using Spearman rank-order correlations. Changes in physical activity between baseline and 3-month assessments were correlated to examine responsiveness to change. The data were stratified to assess outcomes according to different subgroups (e.g., gender, age, weight, activity levels). Results: With regards to the validity, a significant correlation of ρ = 0.19 was found for moderate physical activity, ρ = 0.33 for vigorous physical activity and ρ = 0.23 for moderate and vigorous physical activity combined. For vigorous physical activity correlations were higher than 0.3 for most subgroups, whereas they were only higher than 0.3 in those with a healthy weight for the other activity outcomes. With regards to responsiveness to change, a correlation of ρ = 0.32 was found for moderate physical activity, ρ = 0.19 for vigorous physical activity and ρ = 0.35 for moderate and vigorous physical activity combined. For moderate and vigorous activity combined correlations were higher than 0.4 for several subgroups, but never for vigorous physical activity. Conclusions: Little evidence for the validity of Active Australia Survey was found, although the responsiveness to change was acceptable for several subgroups. Findings from studies using the Active Australia Survey should be interpreted with caution. Trial registration: World Health Organisation Universal Trial Number: U111-1119-1755. Australian New Zealand Clinical Trials Registry, ACTRN12611000157976. Registration date: 8 March 2011
Using Web 2.0 applications to promote health-related physical activity: findings from the WALK 2.0 randomised controlled trial.
BACKGROUND/AIM: Web 2.0 internet technology has great potential in promoting physical activity. This trial investigated the effectiveness of a Web 2.0-based intervention on physical activity behaviour, and the impact on website usage and engagement. METHODS: 504 (328 women, 126 men) insufficiently active adult participants were randomly allocated to one of two web-based interventions or a paper-based Logbook group. The Web 1.0 group participated in the existing 10 000 Steps programme, while the Web 2.0 group participated in a Web 2.0-enabled physical activity intervention including user-to-user interaction through social networking capabilities. ActiGraph GT3X activity monitors were used to assess physical activity at four points across the intervention (0, 3, 12 and 18 months), and usage and engagement were assessed continuously through website usage statistics. RESULTS: Treatment groups differed significantly in trajectories of minutes/day of physical activity (p=0.0198), through a greater change at 3 months for Web 2.0 than Web 1.0 (7.3 min/day, 95% CI 2.4 to 12.3). In the Web 2.0 group, physical activity increased at 3 (mean change 6.8 min/day, 95% CI 3.9 to 9.6) and 12 months (3.8 min/day, 95% CI 0.5 to 7.0), but not 18 months. The Logbook group also increased physical activity at 3 (4.8 min/day, 95% CI 1.8 to 7.7) and 12 months (4.9 min/day, 95% CI 0.7 to 9.1), but not 18 months. The Web 1.0 group increased physical activity at 12 months only (4.9 min/day, 95% CI 0.5 to 9.3). The Web 2.0 group demonstrated higher levels of website engagement (p=0.3964). CONCLUSIONS: In comparison to a Web 1.0 intervention, a more interactive Web 2.0 intervention, as well as the paper-based Logbook intervention, improved physical activity in the short term, but that effect reduced over time, despite higher levels of engagement of the Web 2.0 group. TRIAL REGISTRATION NUMBER: ACTRN12611000157976
Physical activity screening to recruit inactive randomized controlled trial participants: how much is too much?
Citation: Vandelanotte, C., Stanton, R., Rebar, A. L., Van Itallie, A. K., Caperchione, C. M., Duncan, M. J., . . . Kolt, G. S. (2015). Physical activity screening to recruit inactive randomized controlled trial participants: how much is too much? Trials, 16, 3. doi:10.1186/s13063-015-0976-7Screening physical activity levels is common in trials to increase physical activity in inactive populations. Commonly applied single-item screening tools might not always be effective in identifying those who are inactive. We applied the more extensive Active Australia Survey to identify inactive people among those who had initially been misclassified as too active using a single-item measure. Those enrolled after the Active Australia Survey screening had significantly higher physical activity levels at subsequent baseline assessment. Thus, more extensive screening measures might result in the inclusion of participants who would otherwise be excluded, possibly introducing unwanted bias
- …