18 research outputs found

    A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa

    Get PDF
    Several alphaherpesviruses breach the basement membrane during mucosal invasion. In the present study, the role of proteases in this process was examined. The serine protease-specific inhibitor AEBSF inhibited penetration of the basement membrane by the porcine alphaherpesvirus pseudorabies virus (PRV) by 88.1% without affecting lateral spread. Inhibitors of aspartic-, cysteine-, and metalloproteases did not inhibit viral penetration of the basement membrane. Further analysis using the Soybean Type I-S trypsin inhibitor for the serine protease subcategory of trypsin-like serine proteases resulted in a 96.9% reduction in plaque depth underneath the basement membrane. These data reveal a role of a trypsin-like serine protease in PRV penetration of the basement membrane

    Comparative analysis of replication characteristics of BoHV-1 subtypes in bovine respiratory and genital mucosa explants: a phylogenetic enlightenment

    Get PDF
    In general, members of the Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as a preferential site for primary replication. Bovine herpesvirus type 1 (BoHV-1) may replicate at both sites and cause two major clinical entities designated as infectious bovine rhinotracheitis (IBR) and infectious pustular vulvovaginitis/balanoposthitis (IPV/IPB) in cattle. It has been hypothesized that subtype 1.1 invades preferentially the upper respiratory mucosa whereas subtype 1.2 favors replication at the peripheral genital tract. However, some studies are in contrast with this hypothesis. A thorough study of primary replication at both mucosae could elucidate whether or not different BoHV-1 subtypes show differences in mucosa tropism. We established bovine respiratory and genital organ cultures with emphasis on maintenance of tissue morphology and viability during in vitro culture. In a next step, bovine respiratory and genital mucosa explants of the same animals were inoculated with several BoHV-1 subtypes. A quantitative analysis of viral invasion in the mucosa was performed at 0 h, 24 h, 48 h and 72 h post inoculation (pi) by measuring plaque latitude and penetration depth underneath the basement membrane. All BoHV-1 subtypes exhibited a more profound invasion capacity in respiratory tissue compared to that in genital tissue at 24 h pi. However, at 24 h pi plaque latitude was found to be larger in genital tissue compared to respiratory tissue and this for all subtypes. These similar findings among the different subtypes take the edge off the belief of the existence of specific mucosa tropisms of different BoHV-1 subtypes

    Herpes Simplex Virus Type 1 Penetrates the Basement Membrane in Human Nasal Respiratory Mucosa

    Get PDF
    Background: Herpes simplex virus infections are highly prevalent in humans. However, the current therapeutics suffer important drawbacks such as limited results in neonates, increasing occurrence of resistance and impeded treatment of stromal infections. Remarkably, interactions of herpesviruses with human mucosa, the locus of infection, remain poorly understood and the underlying mechanisms in stromal infection remain controversial. Methodology/Principal Findings: A human model consisting of nasal respiratory mucosa explants was characterised. Viability and integrity were examined during 96 h of cultivation. HSV1-mucosa interactions were analysed. In particular, we investigated whether HSV1 is able to reach the stroma. Explant viability and integrity remained preserved. HSV1 induced rounding up and loosening of epithelial cells with very few apoptotic and necrotic cells observed. Following 16-24 h of infection, HSV1 penetrated the basement membrane and replicated in the underlying lamina propria. Conclusions/Significance: This human explant model can be used to study virus-mucosa interactions and viral mucosal invasion mechanisms. Using this model, our results provide a novel insight into the HSV1 stromal invasion mechanism and for the first time directly demonstrate that HSV1 can penetrate the basement membrane

    The pathogenesis and immune evasive mechanisms of equine herpesvirus type 1

    Get PDF
    Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus related to pseudorabies virus (PRV) and varicella-zoster virus (VZV). This virus is one of the major pathogens affecting horses worldwide. EHV-1 is responsible for respiratory disorders, abortion, neonatal foal death and equine herpes myeloencephalopathy (EHM). Over the last decade, EHV-1 has received growing attention due to the frequent outbreaks of abortions and/or EHM causing serious economical losses to the horse industry worldwide. To date, there are no effective antiviral drugs and current vaccines do not provide full protection against EHV-1-associated diseases. Therefore, there is an urgent need to gain a better understanding of the pathogenesis of EHV-1 in order to develop effective therapies. The main objective of this review is to provide state-of-the-art information on the pathogenesis of EHV-1. We also highlight recent findings on EHV-1 immune evasive strategies at the level of the upper respiratory tract, blood circulation and endothelium of target organs allowing the virus to disseminate undetected in the host. Finally, we discuss novel approaches for drug development based on our current knowledge of the pathogenesis of EHV-1

    Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture

    No full text
    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia

    Evaluation of the antiviral activity of (1'S,2'R)-9-[[1',2'-bis(hydroxymethyl)cycloprop-1'-yl]methyl]guanine (A-5021) against equine herpesvirus type 1 in cell monolayers and equine nasal mucosal explants

    No full text
    Equine herpesvirus 1 (EHV1) is a ubiquitous equine alphaherpesvirus that causes respiratory disease, neurological symptoms and abortions. Current vaccines are not fully protective and effective therapeutics are lacking. A-5021 [(1'S,2'R)-9-[[1',2'-bis(hydroxymethyl)cycloprop-1'-yl]methyl]guanine], previously shown to possess potent anti-herpetic activity against most human herpesviruses, was evaluated for its potential to inhibit EHV1 replication. In equine embryonic lung (EEL) cells, infected with either a non-neurovirulent (97P70) or a neurovirulent (03P37) EHV1 isolate, A-5021 proved to be about 15-fold more potent than acyclovir in inhibiting viral replication. Moreover, in equine nasal mucosal explants, A-5021 (at 8 and 32μM) was able to completely inhibit viral plaque formation whereas acyclovir did not exert an antiviral effect at these concentrations. Our data demonstrate that A-5021 is a potent inhibitor of EHV1 replication and may have potential for the treatment and/or prophylaxis of infections with this virus.status: publishe

    Mimicking Herpes Simplex Virus 1 and Herpes Simplex Virus 2 Mucosal Behavior in a Well-Characterized Human Genital Organ Culture

    No full text
    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were found to be expressed in all tissues during the entire menstrual cycle. HVEM expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaquewise mucosal spread across the basement membrane and induced prominent epithelial syncytia

    Evolution of HSV1 mucosal spread.

    No full text
    <p>(A) Kinetic evolution of HSV1 plaque formation. Explants were inoculated with 1 ml virus suspension containing 10<sup>7</sup> TCID<sub>50</sub>/ml HSV1 VR-733 and sampled at 0, 12, 16, 20, 24 and 36 h post inoculation (pi). Serial 20 µm cryosections were made and plaque latitude (white bars) and plaque depth underneath the basement membrane (BM), distance covered by HSV1 in the lamina propria, (black bars) were measured using ImageJ. Data are represented as means of 10 plaques of triplicate independent experiments+SD (error bars). *, Significant differences at the 0.05 level. (B) Representative confocal photomicrographs of the evolution of HSV1 VR-733 spread in human nasal respiratory explants at 0, 12, 16, 20, 24 and 36 h pi. Collagen IV is visualised by red fluorescence. Green fluorescence visualises HSV1 antigens. Bar, 100 µm. Abbreviations: Ep, epithelium; LP, lamina propria. The BM is marked with a dashed line.</p
    corecore