27 research outputs found
Cosmic string loop distribution on all length scales and at any redshift
We analytically derive the expected number density distribution of Nambu-Goto
cosmic string loops at any redshift soon after the time of string formation to
today. Our approach is based on the Polchinski-Rocha model of loop formation
from long strings which we adjust to fit numerical simulations and complement
by a phenomenological modelling of gravitational backreaction. Cosmological
evolution drives the loop distribution towards scaling on all length scales in
both the radiation and matter era. Memory of any reasonable initial loop
distribution in the radiation era is shown to be erased well before Big Bang
Nucleosynthesis. In the matter era, the loop distribution reaches full scaling,
up to some residual loops from the radiation era which may be present for
extremely low string tension. Finally, the number density of loops below the
gravitational cutoff is shown to be scale independent, proportional to a
negative power of the string tension and insensitive to the details of the
backreaction modelling. As an application, we show that the energy density
parameter of loops today cannot exceed 10^(-5) for currently allowed string
tension values, while the loop number density cannot be less than 10^(-6) per
Mpc^3. Our result should provide a more robust basis for studying the
cosmological consequences of cosmic string loops.Comment: 24 pages, 4 figures, uses iopart. References added, matches published
versio
Quantum effects in gravitational wave signals from cuspy superstrings
We study the gravitational emission, in Superstring Theory, from fundamental
strings exhibiting cusps. The classical computation of the gravitational
radiation signal from cuspy strings features strong bursts in the special null
directions associated to the cusps. We perform a quantum computation of the
gravitational radiation signal from a cuspy string, as measured in a
gravitational wave detector using matched filtering and located in the special
null direction associated to the cusp. We study the quantum statistics
(expectation value and variance) of the measured filtered signal and find that
it is very sharply peaked around the classical prediction. Ultimately, this
result follows from the fact that the detector is a low-pass filter which is
blind to the violent high-frequency quantum fluctuations of both the string
worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur
Cosmological evolution of cosmic string loops
The existence of a scaling evolution for cosmic string loops in an expanding
universe is demonstrated for the first time by means of numerical simulations.
In contrast with what is usually assumed, this result does not rely on any
gravitational back reaction effect and has been observed for loops as small as
a few thousandths the size of the horizon. We give the energy and number
densities of expected cosmic string loops in both the radiation and matter
eras. Moreover, we quantify previous claims on the influence of the network
initial conditions and the formation of numerically unresolved loops by showing
that they only concern a transient relaxation regime. Some cosmological
consequences are discussed.Comment: 12 pages, 4 figures, uses iopart. Improved statistics, numerical
robustness discussed in details, references added, note added. Matches
published versio
Many worlds in one
A generic prediction of inflation is that the thermalized region we inhabit
is spatially infinite. Thus, it contains an infinite number of regions of the
same size as our observable universe, which we shall denote as \O-regions. We
argue that the number of possible histories which may take place inside of an
\O-region, from the time of recombination up to the present time, is finite.
Hence, there are an infinite number of \O-regions with identical histories up
to the present, but which need not be identical in the future. Moreover, all
histories which are not forbidden by conservation laws will occur in a finite
fraction of all \O-regions. The ensemble of \O-regions is reminiscent of
the ensemble of universes in the many-world picture of quantum mechanics. An
important difference, however, is that other \O-regions are unquestionably
real.Comment: 9 pages, 2 figures, comments and references adde
Primordial statistical anisotropy generated at the end of inflation
We present a new mechanism for generating primordial statistical anisotropy
of curvature perturbations. We introduce a vector field which has a non-minimal
kinetic term and couples with a waterfall field in hybrid inflation model. In
such a system, the vector field gives fluctuations of the end of inflation and
hence induces a subcomponent of curvature perturbations. Since the vector has a
preferred direction, the statistical anisotropy could appear in the
fluctuations. We present the explicit formula for the statistical anisotropy in
the primordial power spectrum and the bispectrum of curvature perturbations.
Interestingly, there is the possibility that the statistical anisotropy does
not appear in the power spectrum but does appear in the bispectrum. We also
find that the statistical anisotropy provides the shape dependence to the
bispectrum.Comment: 9 pages, This version supersedes the JCAP version. Minor revision
Making predictions in the multiverse
I describe reasons to think we are living in an eternally inflating
multiverse where the observable "constants" of nature vary from place to place.
The major obstacle to making predictions in this context is that we must
regulate the infinities of eternal inflation. I review a number of proposed
regulators, or measures. Recent work has ruled out a number of measures by
showing that they conflict with observation, and focused attention on a few
proposals. Further, several different measures have been shown to be
equivalent. I describe some of the many nontrivial tests these measures will
face as we learn more from theory, experiment, and observation.Comment: 20 pages, 3 figures; invited review for Classical and Quantum
Gravity; v2: references improve
Multiple universes, cosmic coincidences, and other dark matters
Even when completely and consistently formulated, a fundamental theory of
physics and cosmological boundary conditions may not give unambiguous and
unique predictions for the universe we observe; indeed inflation, string/M
theory, and quantum cosmology all arguably suggest that we can observe only one
member of an ensemble with diverse properties. How, then, can such theories be
tested? It has been variously asserted that in a future measurement we should
observe the a priori most probable set of predicted properties (the
``bottom-up'' approach), or the most probable set compatible with all current
observations (the ``top-down'' approach), or the most probable set consistent
with the existence of observers (the ``anthropic'' approach). These inhabit a
spectrum of levels of conditionalization and can lead to qualitatively
different predictions. For example, in a context in which the densities of
various species of dark matter vary among members of an ensemble of otherwise
similar regions, from the top-down or anthropic viewpoints -- but not the
bottom-up -- it would be natural for us to observe multiple types of dark
matter with similar contributions to the observed dark matter density. In the
anthropic approach it is also possible in principle to strengthen this argument
and the limit the number of likely dark matter sub-components. In both cases
the argument may be extendible to dark energy or primordial density
perturbations. This implies that the anthropic approach to cosmology,
introduced in part to explain "coincidences" between unrelated constituents of
our universe, predicts that more, as-yet-unobserved coincidences should come to
light.Comment: 18 JCAP-style pages, accepted by JCAP. Revised version adds
references and some clarification
A prescription for probabilities in eternal inflation
Some of the parameters we call ``constants of Nature'' may in fact be
variables related to the local values of some dynamical fields. During
inflation, these variables are randomized by quantum fluctuations. In cases
when the variable in question (call it ) takes values in a continuous
range, all thermalized regions in the universe are statistically equivalent,
and a gauge invariant procedure for calculating the probability distribution
for is known. This is the so-called ``spherical cutoff method''. In
order to find the probability distribution for it suffices to consider a
large spherical patch in a single thermalized region. Here, we generalize this
method to the case when the range of is discontinuous and there are
several different types of thermalized region. We first formulate a set of
requirements that any such generalization should satisfy, and then introduce a
prescription that meets all the requirements. We finally apply this
prescription to calculate the relative probability for different bubble
universes in the open inflation scenario.Comment: 15 pages, 5 figure
Towards a gauge invariant volume-weighted probability measure for eternal inflation
An improved volume-weighted probability measure for eternal inflation is
proposed. For the models studied in this paper it leads to simple and
intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde