127 research outputs found
Science signaling podcast: 21 July 2015
© 2015 American Association for the Advancement of Science. All rights Reserved. This Podcast features an interview with Cristina Murga and Rocio Vila-Bedmar, authors of a Research Article that appears in the 21 July 2015 issue of Science Signaling, about how deleting the kinase GRK2 can counteract some of the metabolic effects of a bad diet. Obesity affects many of the body's normal functions, most notably metabolism. Obesity is associated with insulin resistance and reduced glucose tolerance, which can lead to type 2 diabetes. It also promotes hepatic steatosis, the accumulation of fat in the liver. Vila-Bedmar et al. show that deleting GRK2 can prevent further weight gain and hepatic steatosis and improve glucose sensitivity in obese mice. Deleting GRK2 improved these metabolic consequences of high-fat diet-induced obesity even if the kinase was deleted after the mice had already become obese and resistant to insulin.Peer Reviewe
Nurses Forming Legal Partnerships to Meet the Needs of the Underserved in Rural America
The impetus for the recognition of the need for legal partners in healthcare came from Boston City Hospital in 1993. The hospital provided care to the largest uninsured and underinsured population in the New England states. The pediatric patients were noted by Dr. Barry Zuckerman to have difficulty in recovering from medical illnesses. He linked their inability to improve their health to poor housing, food insecurity, and basic social determinants of health. His hiring of a part-time lawyer led to a national movement for the development of medical-legal partnerships. The American Bar Association, the National Center for Medical-Legal Partnerships at George Washington University in Washington, DC and the American Academy of Pediatrics formed the first national medical-legal partnership in 2007. Joint resolutions were passed for members to become partners with the other professional colleagues to “address the legal and social issues affecting patient health and well-being.” The American Bar Association resolution led to the creation of the Medical-Legal Partnership Pro Bono Project. In 2015, the East Tennessee State University College of Nursing nurse-led community health center was awarded a small grant from the National Nurse Centers Consortium to participate in the development of a medical-legal partnership. The health center is staffed by Nurse Practitioners who provide health care for the underserved in northeast Tennessee. The patients are diverse and include homeless, migrants, residents of public housing, uninsured, and underinsured. Partnering with the Tennessee Justice Center in Nashville, Tennessee, the nurse-led medical legal partnership improved lives of pediatric patients, adults, pregnant women across the state, and advocacy rights for those who cannot speak for themselves
Planform selection in two-layer Benard-Marangoni convection
Benard-Marangoni convection in a system of two superimposed liquids is
investigated theoretically. Extending previous studies the complete
hydrodynamics of both layers is treated and buoyancy is consistently taken into
account. The planform selection problem between rolls, squares and hexagons is
investigated by explicitly calculating the coefficients of an appropriate
amplitude equation from the parameters of the fluids. The results are compared
with recent experiments on two-layer systems in which squares at onset have
been reported.Comment: 17 pages, 7 figures, oscillatory instability included, typos
corrected, references adde
Onset of Surface-Tension-Driven Benard Convection
Experiments with shadowgraph visualization reveal a subcritical transition to
a hexagonal convection pattern in thin liquid layers that have a free upper
surface and are heated from below. The measured critical Marangoni number (84)
and observation of hysteresis (3%) agree with theory. In some experiments,
imperfect bifurcation is observed and is attributed to deterministic forcing
caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The
appropriate style is "mypprint" which is the defaul
Low-Prandtl-number B\'enard-Marangoni convection in a vertical magnetic field
The effect of a homogeneous magnetic field on surface-tension-driven
B\'{e}nard convection is studied by means of direct numerical simulations. The
flow is computed in a rectangular domain with periodic horizontal boundary
conditions and the free-slip condition on the bottom wall using a
pseudospectral Fourier-Chebyshev discretization. Deformations of the free
surface are neglected. Two- and three-dimensional flows are computed for either
vanishing or small Prandtl number, which are typical of liquid metals. The main
focus of the paper is on a qualitative comparison of the flow states with the
non-magnetic case, and on the effects associated with the possible
near-cancellation of the nonlinear and pressure terms in the momentum equations
for two-dimensional rolls. In the three-dimensional case, the transition from a
stationary hexagonal pattern at the onset of convection to three-dimensional
time-dependent convection is explored by a series of simulations at zero
Prandtl number.Comment: 26 pages, 9 figure
Pearling and Pinching: Propagation of Rayleigh Instabilities
A new category of front propagation problems is proposed in which a spreading
instability evolves through a singular configuration before saturating. We
examine the nature of this front for the viscous Rayleigh instability of a
column of one fluid immersed in another, using the marginal stability criterion
to estimate the front velocity, front width, and the selected wavelength in
terms of the surface tension and viscosity contrast. Experiments are suggested
on systems that may display this phenomenon, including droplets elongated in
extensional flows, capillary bridges, liquid crystal tethers, and viscoelastic
fluids. The related problem of propagation in Rayleigh-like systems that do not
fission is also considered.Comment: Revtex, 7 pages, 4 ps figs, PR
Long-Wavelength Instability in Surface-Tension-Driven Benard Convection
Laboratory studies reveal a deformational instability that leads to a drained
region (dry spot) in an initially flat liquid layer (with a free upper surface)
heated uniformly from below. This long-wavelength instability supplants
hexagonal convection cells as the primary instability in viscous liquid layers
that are sufficiently thin or are in microgravity. The instability occurs at a
temperature gradient 34% smaller than predicted by linear stability theory.
Numerical simulations show a drained region qualitatively similar to that seen
in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The
appropriate style is "mypprint" which is the defaul
Abscisic Acid Insensitive 4 transcription factor is an important player in the response of Arabidopsis thaliana to two-spotted spider mite (Tetranychus urticae) feeding.
Plants growing in constantly changeable environmental conditions are compelled to evolve regulatory mechanisms to cope with biotic and abiotic stresses. Effective defence to invaders is largely connected with phytohormone regulation, resulting in the production of numerous defensive proteins and specialized metabolites. In our work, we elucidated the role of the Abscisic Acid Insensitive 4 (ABI4) transcription factor in the plant response to the two-spotted spider mite (TSSM). This polyphagous mite is one of the most destructive herbivores, which sucks mesophyll cells of numerous crop and wild plants. Compared to the wild-type (Col-0) Arabidopsis thaliana plants, the abi4 mutant demonstrated increased susceptibility to TSSM, reflected as enhanced female fecundity and greater frequency of mite leaf damage after trypan blue staining. Because ABI4 is regarded as an important player in the plastid-to-nucleus retrograde signalling process, we investigated the plastid envelope membrane dynamics using stroma-associated fluorescent marker. Our results indicated a clear increase in the number of stroma-filled tubular structures deriving from the plastid membrane (stromules) in the close proximity of the site of mite leaf damage, highlighting the importance of chloroplast-derived signals in the response to TSSM feeding activity
A Functional Genomic Screen Combined with Time-Lapse Microscopy Uncovers a Novel Set of Genes Involved in Dorsal Closure of Drosophila Embryos
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes
- …