497 research outputs found
Erasing Distinguishability Using Quantum Frequency Up-Conversion
The frequency distinguishability of two single photons was successfully
erased using single photon frequency up-conversion. A frequency non-degenerate
photon pair generated via spontaneous four-wave mixing in a dispersion shifted
fiber was used to emulate two telecom-band single photons that were in the same
temporal mode but in different frequency modes. The frequencies of these
photons were converted to the same frequency by using the sum frequency
generation process in periodically poled lithium niobate waveguides, while
maintaining their temporal indistinguishability. As a result, the two converted
photons exhibited a non-classical dip in a Hong-Ou-Mandel quantum interference
experiment. The present scheme will add flexibility to networking quantum
information systems that use photons with various wavelengths.Comment: 4 pages, 5 figure
Quantum optical waveform conversion
Currently proposed architectures for long-distance quantum communication rely
on networks of quantum processors connected by optical communications channels
[1,2]. The key resource for such networks is the entanglement of matter-based
quantum systems with quantum optical fields for information transmission. The
optical interaction bandwidth of these material systems is a tiny fraction of
that available for optical communication, and the temporal shape of the quantum
optical output pulse is often poorly suited for long-distance transmission.
Here we demonstrate that nonlinear mixing of a quantum light pulse with a
spectrally tailored classical field can compress the quantum pulse by more than
a factor of 100 and flexibly reshape its temporal waveform, while preserving
all quantum properties, including entanglement. Waveform conversion can be used
with heralded arrays of quantum light emitters to enable quantum communication
at the full data rate of optical telecommunications.Comment: submitte
Efficient Fiber Optic Detection of Trapped Ion Fluorescence
Integration of fiber optics may play a critical role in the development of
quantum information processors based on trapped ions and atoms by enabling
scalable collection and delivery of light and coupling trapped ions to optical
microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that
includes an integrated optical fiber for detecting 280-nm fluorescence photons.
The collection numerical aperture is 0.37 and total collection efficiency is
2.1 %. The ion can be positioned between 80 \mum and 100 \mum from the tip of
the fiber by use of an adjustable rf-pseudopotential.Comment: 4 pages, 3 figures
Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors
We compare the performance of various quantum key distribution (QKD) systems
using a novel single-photon detector, which combines frequency up-conversion in
a periodically poled lithium niobate (PPLN) waveguide and a silicon avalanche
photodiode (APD). The comparison is based on the secure communication rate as a
function of distance for three QKD protocols: the Bennett-Brassard 1984 (BB84),
the Bennett, Brassard, and Mermin 1992 (BBM92), and the coherent differential
phase shift keying (DPSK). We show that the up-conversion detector allows for
higher communication rates and longer communication distances than the commonly
used InGaAs/InP APD for all the three QKD protocols.Comment: 9 pages, 9 figure
High fidelity transport of trapped-ion qubits through an X-junction trap array
We report reliable transport of 9Be+ ions through a 2-D trap array that
includes a separate loading/reservoir zone and an "X-junction". During
transport the ion's kinetic energy in its local well increases by only a few
motional quanta and internal-state coherences are preserved. We also examine
two sources of energy gain during transport: a particular radio-frequency (RF)
noise heating mechanism and digital sampling noise. Such studies are important
to achieve scaling in a trapped-ion quantum information processor.Comment: 4 pages, 3 figures Updated to reduce manuscript to four pages. Some
non-essential information was removed, including some waveform information
and more detailed information on the tra
A microfabricated surface ion trap on a high-finesse optical mirror
A novel approach to optics integration in ion traps is demonstrated based on
a surface electrode ion trap that is microfabricated on top of a dielectric
mirror. Additional optical losses due to fabrication are found to be as low as
80 ppm for light at 422 nm. The integrated mirror is used to demonstrate light
collection from, and imaging of, a single 88 Sr+ ion trapped m
above the mirror.Comment: 4 pages, 3 figure
Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color
We study quantum frequency translation and two-color photon interference
enabled by the Bragg scattering four-wave mixing process in optical fiber.
Using realistic model parameters, we computationally and analytically determine
the Green function and Schmidt modes for cases with various pump-pulse lengths.
These cases can be categorized as either "non-discriminatory" or
"discriminatory" in regards to their propensity to exhibit high-efficiency
translation or high-visibility two-photon interference for many different
shapes of input wave packets or for only a few input wave packets,
respectively. Also, for a particular case, the Schmidt mode set was found to be
nearly equal to a Hermite-Gaussian function set. The methods and results also
apply with little modification to frequency conversion by sum-frequency
conversion in optical crystals
- …
