45 research outputs found

    Prospective, randomized evaluation of a personal digital assistant-based research tool in the emergency department

    Get PDF
    Background Personal digital assistants (PDA) offer putative advantages over paper for collecting research data. However, there are no data prospectively comparing PDA and paper in the emergency department. The aim of this study was to prospectively compare the performance of PDA and paper enrollment instruments with respect to time required and errors generated. Methods We randomized consecutive patients enrolled in an ongoing prospective study to having their data recorded either on a PDA or a paper data collection instrument. For each method, we recorded the total time required for enrollment, and the time required for manual transcription (paper) onto a computer database. We compared data error rates by examining missing data, nonsensical data, and errors made during the transcription of paper forms. Statistical comparisons were performed by Kruskal-Wallis and Poisson regression analyses for time and errors, respectively. Results We enrolled 68 patients (37 PDA, 31 paper). Two of 31 paper forms were not available for analysis. Total data gathering times, inclusive of transcription, were significantly less for PDA (6:13 min per patient) compared to paper (9:12 min per patient; p < 0.001). There were a total of 0.9 missing and nonsense errors per paper form compared to 0.2 errors per PDA form (p < 0.001). An additional 0.7 errors per paper form were generated during transcription. In total, there were 1.6 errors per paper form and 0.2 errors per PDA form (p < 0.001). Conclusion Using a PDA-based data collection instrument for clinical research reduces the time required for data gathering and significantly improves data integrity

    Evidence for handheld electronic medical records in improving care: a systematic review

    Get PDF
    BACKGROUND: Handheld electronic medical records are expected to improve physician performance and patient care. To confirm this, we performed a systematic review of the evidence assessing the effects of handheld electronic medical records on clinical care. METHODS: To conduct the systematic review, we searched MEDLINE, EMBASE, CINAHL, and the Cochrane library from 1966 through September 2005. We included randomized controlled trials that evaluated effects on practitioner performance or patient outcomes of handheld electronic medical records compared to either paper medical records or desktop electronic medical records. Two reviewers independently reviewed citations, assessed full text articles and abstracted data from the studies. RESULTS: Two studies met our inclusion criteria. No other randomized controlled studies or non-randomized controlled trials were found that met our inclusion criteria. Both studies were methodologically strong. The studies examined changes in documentation in orthopedic patients with handheld electronic medical records compared to paper charts, and both found an increase in documentation. Other effects noted with handheld electronic medical records were an increase in time to document and an increase in wrong or redundant diagnoses. CONCLUSION: Handheld electronic medical records may improve documentation, but as yet, the number of studies is small and the data is restricted to one group of patients and a small group of practitioners. Further study is required to determine the benefits with handheld electronic medical records especially in assessing clinical outcomes

    Usability of a barcode scanning system as a means of data entry on a PDA for self-report health outcome questionnaires: a pilot study in individuals over 60 years of age

    Get PDF
    BACKGROUND: Throughout the medical and paramedical professions, self-report health status questionnaires are used to gather patient-reported outcome measures. The objective of this pilot study was to evaluate in individuals over 60 years of age the usability of a PDA-based barcode scanning system with a text-to-speech synthesizer to collect data electronically from self-report health outcome questionnaires. METHODS: Usability of the system was tested on a sample of 24 community-living older adults (7 men, 17 women) ranging in age from 63 to 93 years. After receiving a brief demonstration on the use of the barcode scanner, participants were randomly assigned to complete two sets of 16 questions using the bar code wand scanner for one set and a pen for the other. Usability was assessed using directed interviews with a usability questionnaire and performance-based metrics (task times, errors, sources of errors). RESULTS: Overall, participants found barcode scanning easy to learn, easy to use, and pleasant. Participants were marginally faster in completing the 16 survey questions when using pen entry (20/24 participants). The mean response time with the barcode scanner was 31 seconds longer than traditional pen entry for a subset of 16 questions (p = 0.001). The responsiveness of the scanning system, expressed as first scan success rate, was less than perfect, with approximately one-third of first scans requiring a rescan to successfully capture the data entry. The responsiveness of the system can be explained by a combination of factors such as the location of the scanning errors, the type of barcode used as an answer field in the paper version, and the optical characteristics of the barcode scanner. CONCLUSION: The results presented in this study offer insights regarding the feasibility, usability and effectiveness of using a barcode scanner with older adults as an electronic data entry method on a PDA. While participants in this study found their experience with the barcode scanning system enjoyable and learned to become proficient in its use, the responsiveness of the system constitutes a barrier to wide-scale use of such a system. Optimizing the graphical presentation of the information on paper should significantly increase the system's responsiveness

    The use of the computerized version of quality of life and health status questionnaires in a community sample in southern Brazil

    Full text link
    CONTEXT AND OBJECTIVE: Computerized data collection is an efficient process and well accepted by patients with different disorders. Although computer-based systems have been used to assess health status and quality of life in various areas of healthcare, there is a lack of studies to investigate the effectiveness of these instruments in Brazil. The aims here were to assess the usability of the Portuguese-language versions of the Personal Health Scale (PHS) and the Multicultural Quality of Life Index (MQLI) in southern Brazil and to determine the correlation between these two questionnaires. DESIGN AND SETTING: This was a cross-sectional community-based survey in which participants completed computerized versions of these two questionnaires. METHODS: In a survey conducted in 16 different locations, 458 volunteers completed both questionnaires. Pearson correlation coefficients were generated between the scores of the two questionnaires. The inclusion criteria allowed all volunteers who were able to understand the questions in both questionnaires to participate in the study. RESULTS: The percentage of proper data collection via the computerized versions of the two questionnaires combined was 97.45%. A significant correlation (P < 0.01) between the PHS and the MQLI was observed. CONCLUSION: The computerized versions of the PHS and MQLI demonstrated efficient data collection patterns during the field survey trials. Health-related issues were significantly correlated with the overall experience of wellbeing and quality of life. The computerized versions of the PHS and MQLI are valid tools for research and clinical use in Brazi

    Wearing Masks in a Pediatric Hospital

    No full text
    corecore