1,476 research outputs found

    Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping

    Full text link
    Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during Galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during Galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence leading to new insights in the understanding of the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures

    Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors

    Full text link
    Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films is investigated by a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni-5at.%W substrates with a {100} biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly facetted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS yielding a 1.8 \pm 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7-{\delta} coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.Comment: Accepted for publication in Superconductor Science and Technolog

    Formation and Thermal Stability of Gold-Silica Nanohybrids: Insight into the Mechanism and Morphology by Electron Tomography

    Full text link
    Gold-silica hybrids are appealing in different fields of applications like catalysis, sensors, drug delivery, and biotechnology. In most cases, the morphology and distribution of the hetero-units play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the hetero-units, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the hetero-units by scanning transmission electron microscopy (STEM) tomography is presented at the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nano-particles. The hybrid shows good thermal stability up to 400 C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed

    Shaping electron beams for the generation of innovative measurements in the (S)TEM

    Get PDF
    In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new application in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion showing that electron probes can be tuned to optimise a specific measurement or interaction

    Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7

    Full text link
    We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band structure calculations, we solve the room-temperature structure of this compound [alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889 A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub), space group Pbam] are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 K and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the gamma --> beta transformation, while a cooperative tilting of the NbO6 octahedra in the alpha-phase further eliminates the disorder of the Cu atoms. The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding the magnetic properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif files) include

    Spin ladder compound Pb(0.55)Cd(0.45)V(2)O(5): synthesis and investigation

    Full text link
    The complex oxide Pb(0.55)Cd(0.45)V(2)O(5) was synthesized and investigated by means of X-ray powder diffraction, electron diffraction, magnetic susceptibility measurements and band structure calculations. Its structure is similar to that of MV(2)O(5) compounds (M = Na, Ca) giving rise to a spin system of coupled S=1/2 two-leg ladders. Magnetic susceptibility measurements reveal a spin gap-like behavior with \Delta ~ 270 K and a spin singlet ground state. Band structure calculations suggest Pb(0.55)Cd(0.45)V(2)O(5) to be a system of weakly coupled dimers in perfect agreement with the experimental data. Pb(0.55)Cd(0.45)V(2)O(5) provides an example of the modification of the spin system in layered vanadium oxides by cation substitution. Simple correlations between the cation size, geometrical parameters and exchange integrals for the MV(2)O(5)-type oxides are established and discussed.Comment: 8 pages, 7 figure

    Incorporation of Pure Fullerene into Organoclays:Towards C60-Pillared Clay Structures

    Get PDF
    In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al3+ ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorption–desorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.
    corecore