36 research outputs found

    5-HT7 receptors in Alzheimer's disease

    Get PDF
    Even though the involvement of serotonin (5-hydroxytryptamine; 5-HT) and its receptors in Alzheimer’s disease (AD) is widely accepted, data on the expression and the role of 5-HT7 receptors in AD is relatively limited. Therefore, the objective of the present work was to study the expression of serotonergic 5-HT7 receptors in postmortem samples of AD brains and correlate it with neurotransmitter levels, cognition and behavior. The study population consisted of clinically well-characterized and neuropathologically confirmed AD patients (n = 42) and age-matched control subjects (n = 18). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and high-performance liquid chromatography were performed on Brodmann area (BA) 7, BA10, BA22, BA24, hippocampus, amygdala, thalamus and cerebellum to measure mRNA levels of 5-HT7 receptors (HTR7), as well as the concentrations of various monoamine neurotransmitters and their metabolites. Decreased levels of HTR7 mRNA were observed in BA10. A significant association was observed between HTR7 levels in BA10 and BEHAVE-AD cluster B (hallucinations) (rs(28) = 0.444, P < 0.05). In addition, a negative correlation was observed between HTR7 levels in BA10 and both MHPG concentrations in this brain region (rs(45) = -0.311; P < 0.05), and DOPAC levels in the amygdala (rs(42) = -0.311; P < 0.05). Quite sur- prisingly, no association was found between HTR7 levels and cognitive status. Altogether, this study supports the notion of the involvement of 5-HT7 receptors in psychotic symptoms in AD, suggesting the interest of testing antagonist acting at this receptor to specifically treat psychotic symptoms in this illness

    Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer's Disease

    Get PDF
    Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer’s disease (AD). As insulin resistance can be caused by high-stress hormone levels and since hypercortisolism appears to be an important risk factor of AD, we aimed to investigate the systemic insulin functionality and circulating stress hormone levels in a mutant humanized amyloid precursor protein (APP) overexpressing (hAPP23+/−) AD mouse model. Memory and spatial learning of male hAPP23+/− and C57BL/6 (wild type, WT) mice were assessed by a Morris Water Maze (MWM) test at the age of 4 and 12 months. The systemic metabolism was examined by intraperitoneal glucose and insulin tolerance tests (GTT, ITT). Insulin and corticosterone levels were determined in serum. In the hippocampus, parietal and occipital cortex of hAPP23+/− brains, amyloid-beta (Aβ) deposits were present at 12 months of age. MWM demonstrated a cognitive decline in hAPP23+/− mice at 12 but not at 4 months, evidenced by increasing total path lengths and deteriorating probe trials compared to WT mice. hAPP23+/− animals presented increased serum corticosterone levels compared to WT mice at both 4 and 12 months. hAPP23+/− mice exhibited peripheral insulin resistance compared to WT mice at 4 months, which stabilized at 12 months of age. Serum insulin levels were similar between genotypes at 4 months of age but were significantly higher in hAPP23+/− mice at 12 months of age. Peripheral glucose homeostasis remained unchanged. These results indicate that peripheral insulin resistance combined with elevated circulating stress hormone levels could be potential biomarkers of the pre-symptomatic phase of AD

    Monoaminergic impairment in Down syndrome with Alzheimer's disease compared to early-onset Alzheimer's disease

    Get PDF
    Introduction: People with Down syndrome (DS) are at high risk for Alzheimer's disease (AD). Defects in monoamine neurotransmitter systems are implicated in DS and AD but have not been comprehensively studied in DS. Methods: Noradrenaline, adrenaline, and their metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; and serotonin and its metabolite 5-hydroxyindoleacetic acid were quantified in 15 brain regions of DS without AD (DS, n = 4), DS with AD (DS+AD, n = 17), early-onset AD (EOAD, n = 11) patients, and healthy non-DS controls (n = 10) in the general population. Moreover, monoaminergic concentrations were determined in cerebrospinal fluid (CSF)/plasma samples of DS (n = 37/149), DS with prodromal AD (DS+pAD, n = 13/36), and DS+AD (n = 18/40). Results: In brain, noradrenergic and serotonergic compounds were overall reduced in DS+AD versus EOAD, while the dopaminergic system showed a bidirectional change. For DS versus non-DS controls, significantly decreased MHPG levels were noted in various brain regions, though to a lesser extent than for DS+AD versus EOAD. Apart from DOPAC, CSF/plasma concentrations were not altered between groups. Discussion: Monoamine neurotransmitters and metabolites were evidently impacted in DS, DS+AD, and EOAD. DS and DS+AD presented a remarkably similar monoaminergic profile, possibly related to early deposition of amyloid pathology in DS. To confirm whether monoaminergic alterations are indeed due to early amyloid β accumulation, future avenues include positron emission tomography studies of monoaminergic neurotransmission in relation to amyloid deposition, as well as relating monoaminergic concentrations to CSF/plasma levels of amyloid β and tau within individuals

    Erratum:The behavioral and psychological symptoms of dementia in down syndrome scale (BPSD-DS II): Optimization and further validation

    Get PDF
    BACKGROUND: People with Down syndrome (DS) are at high risk to develop Alzheimer's disease dementia (AD). Behavioral and psychological symptoms of dementia (BPSD) are common and may also serve as early signals for dementia. However, comprehensive evaluation scales for BPSD, adapted to DS, are lacking. Therefore, we previously developed the BPSD-DS scale to identify behavioral changes between the last six months and pre-existing life-long characteristic behavior. OBJECTIVE: To optimize and further study the scale (discriminative ability and reliability) in a large representative DS study population. METHODS: Optimization was based on item irrelevance and clinical experiences obtained in the initial study. Using the shortened and refined BPSD-DS II, informant interviews were conducted to evaluate 524 DS individuals, grouped according to dementia status: no dementia (DS, N = 292), questionable dementia (DS + Q, N = 119), and clinically diagnosed dementia (DS + AD, N = 113). RESULTS: Comparing item change scores between groups revealed prominent changes in frequency and severity for anxious, sleep-related, irritable, restless/stereotypic, apathetic, depressive, and eating/drinking behavior. For most items, the proportion of individuals displaying an increased frequency was highest in DS + AD, intermediate in DS + Q, and lowest in DS. For various items within sections about anxious, sleep-related, irritable, apathetic, and depressive behaviors, the proportion of individuals showing an increased frequency was already substantial in DS + Q, suggesting that these changes may serve as early signals of AD in DS. Reliability data were promising. CONCLUSION: The optimized scale yields largely similar results as obtained with the initial version. Systematically evaluating BPSD in DS may increase understanding of changes among caregivers and (timely) adaptation of care/treatment

    Monoaminergic impairment in Down syndrome with Alzheimer's disease compared to early-onset Alzheimer's disease

    Get PDF
    Altres ajuts: Fundacio Bancaria La Caixa, Marató de TV3 (20141210), Grifols Foundation, Generalitat de Catalunya 2014SGR-0235,Fundació Catalana de Sındrome de Down (FCSD), Interuniversity Poles of Attraction of the Belgian Federal Science Policy Office/IAP P7/16, Belgian Foundation for Alzheimer Research/SAO-FRA 15002.People with Down syndrome (DS) are at high risk for Alzheimer's disease (AD). Defects in monoamine neurotransmitter systems are implicated in DS and AD but have not been comprehensively studied in DS. Noradrenaline, adrenaline, and their metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid; and serotonin and its metabolite 5-hydroxyindoleacetic acid were quantified in 15 brain regions of DS without AD (DS, n = 4), DS with AD (DS+AD, n = 17), early-onset AD (EOAD, n = 11) patients, and healthy non-DS controls (n = 10) in the general population. Moreover, monoaminergic concentrations were determined in cerebrospinal fluid (CSF)/plasma samples of DS (n = 37/149), DS with prodromal AD (DS+pAD, n = 13/36), and DS+AD (n = 18/40). In brain, noradrenergic and serotonergic compounds were overall reduced in DS+AD versus EOAD, while the dopaminergic system showed a bidirectional change. For DS versus non-DS controls, significantly decreased MHPG levels were noted in various brain regions, though to a lesser extent than for DS+AD versus EOAD. Apart from DOPAC, CSF/plasma concentrations were not altered between groups. Monoamine neurotransmitters and metabolites were evidently impacted in DS, DS+AD, and EOAD. DS and DS+AD presented a remarkably similar monoaminergic profile, possibly related to early deposition of amyloid pathology in DS. To confirm whether monoaminergic alterations are indeed due to early amyloid β accumulation, future avenues include positron emission tomography studies of monoaminergic neurotransmission in relation to amyloid deposition, as well as relating monoaminergic concentrations to CSF/plasma levels of amyloid β and tau within individuals
    corecore