385 research outputs found
On the thermodynamic stability and structural transition of clathrate hydrates
Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure
A branch-point approximant for the equation of state of hard spheres
Using the first seven known virial coefficients and forcing it to possess two
branch-point singularities, a new equation of state for the hard-sphere fluid
is proposed. This equation of state predicts accurate values of the higher
virial coefficients, a radius of convergence smaller than the close-packing
value, and it is as accurate as the rescaled virial expansion and better than
the Pad\'e [3/3] equations of state. Consequences regarding the convergence
properties of the virial series and the use of similar equations of state for
hard-core fluids in dimensions are also pointed out.Comment: 6 pages, 4 tables, 3 figures; v2: enlarged version, extension to
other dimensionalities; v3: typos in references correcte
Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional
We study the structure of the constrained minimizers of the
Gates-Lebowitz-Penrose free-energy functional ,
non-local functional of a density field , , a
-dimensional torus of side length . At low temperatures, is not convex, and has two distinct global minimizers,
corresponding to two equilibrium states. Here we constrain the average density
L^{-d}\int_{{\cal T}_L}m(x)\dd x to be a fixed value between the
densities in the two equilibrium states, but close to the low density
equilibrium value. In this case, a "droplet" of the high density phase may or
may not form in a background of the low density phase, depending on the values
and . We determine the critical density for droplet formation, and the
nature of the droplet, as a function of and . The relation between the
free energy and the large deviations functional for a particle model with
long-range Kac potentials, proven in some cases, and expected to be true in
general, then provides information on the structure of typical microscopic
configurations of the Gibbs measure when the range of the Kac potential is
large enough
On the thermodynamic stability of clathrate hydrates IV: Double occupancy of cages
We have extended the van der Waals and Platteeuw theory to treat multiple occupancy of a single cage of clathrate hydrates, which has not been taken into account in the original theory but has been experimentally confirmed as a real entity. We propose a simple way to calculate the free energy of multiple cage occupancy and apply it to argon clathrate structure II in which a larger cage can be occupied by two argon atoms. The chemical potential of argon is calculated treating it as an imperfect gas, which is crucial to predict accurate pressure dependence of double occupancy expected at high pressure. It is found that double occupancy dominates over single occupancy when the guest pressure in equilibrium with the clathrate hydrate exceeds 270 MPa. (C) 2004 American Institute of Physics
On the relation between virial coefficients and the close-packing of hard disks and hard spheres
The question of whether the known virial coefficients are enough to determine
the packing fraction at which the fluid equation of state of a
hard-sphere fluid diverges is addressed. It is found that the information
derived from the direct Pad\'e approximants to the compressibility factor
constructed with the virial coefficients is inconclusive. An alternative
approach is proposed which makes use of the same virial coefficients and of the
equation of state in a form where the packing fraction is explicitly given as a
function of the pressure. The results of this approach both for hard-disk and
hard-sphere fluids, which can straightforwardly accommodate higher virial
coefficients when available, lends support to the conjecture that
is equal to the maximum packing fraction corresponding to an ordered
crystalline structure.Comment: 10 pages, 6 figures; v2: discussion about hard-square and
hard-hexagon systems on a lattice added; five new reference
New results for virial coefficients of hard spheres in D dimensions
We present new results for the virial coefficients B_k with k <= 10 for hard
spheres in dimensions D=2,...,8.Comment: 10 pages, 5 figures, to appear in conference proceedings of STATPHYS
2004 in Pramana - Journal of Physic
Laterally driven interfaces in the three-dimensional Ising lattice gas
We study the steady state of a phase-separated driven Ising lattice gas in
three dimensions using computer simulations with Kawasaki dynamics. An external
force field F(z) acts in the x direction parallel to the interface, creating a
lateral order parameter current j^x(z) which varies with distance z from the
interface. Above the roughening temperature, our data for `shear-like' linear
variation of F(z) are in agreement with the picture wherein shear acts as
effective confinement in this system, thus supressing the interfacial
capillary-wave fluctuations. We find sharper magnetisation profiles and reduced
interfacial width as compared to equilibrium. Pair correlations are more
suppressed in the vorticity direction y than in the driving direction; the
opposite holds for the structure factor. Lateral transport of capillary waves
occurs for those forms of F(z) for which the current j^x(z) is an odd function
of z, for example the shear-like drive, and a `step-like' driving field. For a
V-shaped driving force no such motion occurs, but capillary waves are
suppressed more strongly than for the shear-like drive. These findings are in
agreement with our previous simulation studies in two dimensions. Near and
below the (equilibrium) roughening temperature the effective-confinement
picture ceases to work, but the lateral motion of the interface persists.Comment: 20 pages, 11 figures, submitted to Phys. Rev.
Free Energy Minimizers for a Two--Species Model with Segregation and Liquid-Vapor Transition
We study the coexistence of phases in a two--species model whose free energy
is given by the scaling limit of a system with long range interactions (Kac
potentials) which are attractive between particles of the same species and
repulsive between different species.Comment: 32 pages, 1 fig, plain tex, typeset twic
Statistics of Fluctuating Colloidal Fluid-Fluid Interfaces
Fluctuations of the interface between coexisting colloidal fluid phases have
been measured with confocal microscopy. Due to a very low surface tension, the
thermal motions of the interface are so slow, that a record can be made of the
positions of the interface. The theory of the interfacial height fluctuations
is developed. For a host of correlation functions, the experimental data are
compared with the theoretical expressions. The agreement between theory and
experiment is remarkably good.Comment: 22 pages, 10 figure
- …