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Fluctuations of the interface between coexisting colloidal fluid phases have been measured with
confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so
slow that a record can be made of the positions of the interface. The theory of the interfacial height
fluctuations is developed. For a host of correlation functions, the experimental data are compared
with the theoretical expressions. The agreement between theory and experiment is remarkably
good. © 2008 American Institute of Physics. �DOI: 10.1063/1.3000639�

I. INTRODUCTION

The study of interfaces has a long and interesting history.
In 1894 van der Waals1 proposed an interface theory, which
leads to a flat interface with a density profile in the direction
of gravity. This result is sometimes referred to as the intrin-
sic interface. von Schmoluchowski2 realized that the thermal
motion of the molecules induces height fluctuations in the
interface. These motions have been called capillary waves,
since they derive from an interplay of gravity and surface
tension, such as capillary rise. The fluctuations were first
treated theoretically and experimentally by Mandelstam.3 He
pointed out that the interface width diverges due to the short-
wavelength capillary waves. This fact was rediscovered by
Buff et al.4 50 years later, after which it obtained a prominent
place in the discussion of interfaces. Weeks5 later pointed out
that the notion of capillary waves only applies to wave-
lengths larger than the fluid correlation length, which is of
the order of the interparticle distance.

The experimental study of interfaces was undertaken by
Raman6 and Vrij7 with light scattering and starting with Bra-
slau and co-workers8–10 by x-ray scattering. Although scat-
tering on interfaces is most valuable, it always yields global
information on the fluctuations, while a photographic inspec-
tion gives local information. However, the wavelengths and
heights involved in the capillary waves of molecular fluids
are way out of the reach of detection by photographic meth-
ods. The visual inspection of capillary waves initially re-
mained restricted to computer simulations of interfaces in
molecular systems.11

The field obtained another dimension by recent experi-
ments of Aarts and co-workers12–15 in which they obtained
pictures of fluctuating colloidal interfaces. The key is that, by
lowering the surface tension to the nN/m range, the charac-
teristic length and time scale of the fluctuations become ac-
cessible by confocal microscopy. This opened up the possi-
bility to follow locally the motion of the height of the

interface and to do a statistical analysis of its temporal and
spatial behaviors. Of course the method has its inherent re-
strictions. Just as in ordinary movie recording, the pixels
have a finite distance and the snapshots have to be taken at
finite time intervals. For colloidal interfaces this interval can
be made much smaller than the intrinsic time scale of the
motions. Thus the Brownian character of the motion could be
demonstrated ad oculos.

Fluctuating interfaces present also the interesting prob-
lem of determining the so-called persistence exponent,16

which characterizes the long-time power law decay of the
probability that a fluctuating interface stays above a certain
height. The determination of this probability amounts to cal-
culating the probability of first crossing that height. Even
though the long-time persistence exponent is a well-studied
problem about which much is known,16,17 the determination
of the first passage probability of a general Gaussian process
with known autocorrelation function was deemed a classic
unsolved problem in probability theory.16,17 In this paper we
do not focus on the value of the persistence exponent at long
times but rather on the first passage distribution over time
scales, which can be probed in detail in the experiments that
we present. We discuss the measurement of the first passage
distribution and we give a partial solution to its calculation
from the autocorrelation function.

In the confocal microscopy a two-dimensional section is
inspected perpendicular to the interface and the density pro-
file between the two phases is observed. A schematic of the
experiment is shown in Fig. 1�a�. A very precise location of
the interface can be obtained by fitting the intensity with a
van der Waals-like profile: I�z ,x�=a+b tanh��z−h�x�� /c�,
where z is the direction perpendicular to the interface and x
is a coordinate along the interface. In the upper phase the
density approaches a value corresponding to a+b and in the
lower phase to a−b, while c measures the intrinsic width of
the interface. Thus at every snapshot a function h�x� follows
and the sequence of snapshots gives the function h�x , t�. This
is a practical separation of the particle motions, which lead at
short scales to the intrinsic interface and the particle mo-a�Electronic mail: vdevilleneuve@hotmail.com.
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tions, which drive the long wavelength capillary waves. One
might think that, if the time interval of the snapshots is suf-
ficiently small with respect to the characteristic time scale of
variation in h�x , t�, one can analyze h�x , t� as a continuous
function of the time, like a movie gives the impression of
continuous motions, while it is a succession of snapshots. In
a previous short report18 on these experiments we have
pointed out that the statistics remains dependent on the time
interval, due to the Brownian character of the motion.

We have performed confocal microscopy measurements
on phase separated colloid-polymer mixtures. The colloids
are 69 nm radius fluorescently labeled polymethyl metacry-
late particles, suspended in cis/trans decalin, with polysty-
rene �estimated radius of gyration=42 nm�19 added as a de-
pletant polymer. Due to a depletion induced attraction these
mixtures phase separate at sufficiently high colloid and poly-
mer volume fractions and a proper colloid to polymer aspect
ratio into a colloid-rich/polymer-poor �colloidal liquid� and a
colloid-poor/polymer-rich �colloidal gas� phase.20 Here the
polymer concentration acts as an inverse temperature. By
diluting several phase separating samples with its solvent
decalin, the phase diagram was constructed. With a Nikon
E400 microscope equipped with a Nikon C1 confocal scan-
head, a series of 10 000 snapshots of the interface was re-
corded at constant intervals �t of 0.45 and 0.50 s of two
statepoints, which we denote as II and IV, following the no-
tation in an earlier publication,18 to which we also refer for a
discussion of the full phase diagram. The pixels are separated
by a distance �x=156 nm and a single scan takes approxi-
mately 0.25 s to complete.

The setup of the paper is as follows. We start out by
discussing the spatial behavior of the data of a single time
frame, which requires only equilibrium statistics. The corre-
lation functions and the statistics of hills and valleys in the
interface are determined and compared to the theory.

Then we identify the set of interface modes via the Fou-
rier decomposition

h�x,t� = �
k

hk�t�exp�ik · x� . �1�

The modes are overdamped in the relevant regime and fol-
low from the macroscopic interface dynamics. The motion
obeys not only the macroscopic equations but is also influ-
enced by noise. We introduce thermal noise through the
Langevin equation and calculate the essential height-height
correlation function �h�0 ,0�h�x , t��. Via the equivalent

Fokker–Planck equation the probabilities on sequences �“his-
tories”� of snapshots are determined. The analysis of the dis-
tributions of “hills” and “valleys” in the time domain with
respect to a level h is similar to the spatial behavior. A spe-
cial concern is the dependence of the residence time and the
waiting time on the used time interval.

The paper closes with a discussion of the main results.

II. EQUAL TIME CORRELATIONS

The function h�x , t� provides a mathematical division
between the two coexisting phases, which form the interface.
The interface is of the solid-on-solid type since so-called
overhangs, well known in lattice theory, are excluded by
construction, as to every value of the horizontal coordinate x
and time t one unique height h�x , t� is associated. The basic
function is the height-height correlation function. Due to
translational invariance the modes k are independent and
thus the correlation function in space has the Fourier decom-
position

�h�0,0�h�x,0�� = �
k

��hk
2��exp�ik · x� . �2�

The brackets denote equilibrium averages and hk is the am-
plitude of the kth mode. The distribution of the hk follows
from the Boltzmann factor involving the energy of a defor-
mation of the interface, which is given by the drumhead
model

H�	h
� =
1

2
� dx���gh2�x� + ���h�x��2� . �3�

Here �� is the density difference between the coexisting
phases, � is the surface tension, and g is the gravitational
acceleration. The first term gives the gravitational potential
energy and the second term gives the extra interfacial energy
due to increase in the surface. Expressed in terms of the
amplitudes hk,

H�	h
� =
L2

2 �
k

���g + �k2��hk�2, �4�

where L2 is the area of the interface.21 Since Eq. �4� is qua-
dratic in the amplitudes hk, it implies a Gaussian distribution
for the hk as follows:

Pe�hk� =
exp − �hk�2/2��hk�2�

�2���hk�2��1/2 , �5�

with the average

��hk�2� =
kBT

L2���g + �k2�
. �6�

With the distribution �5� of the hk, we can calculate the
distribution of the heights h, which becomes also a Gaussian

Peq�h� =
exp�− h2/2�h2��

�2��h2��1/2 , �7�

with the mean square height �h2� given by

FIG. 1. Schematic view of confocal microscopy. The confocal microscope
thin focal planes of approximately 500 nm thickness can be imaged. This
enables the investigation of local phenomena such as height fluctuations.
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�h2� = �
k

�hk
2� =

kBT

4��
ln

1 + kmax
2 �2

1 + kmin
2 �2 . �8�

� is the capillary length defined as

�2 =
�

g��
. �9�

The integral has been given an upper bound kmax�2� /d
with d the diameter of the particles and a lower bound kmin

�2� /L due to the finite size of the interface. The lower
bound can be set equal to 0 for all practical purposes, but the
upper bound is essential for the convergence of the integral.
Cutting off the capillary waves at the short-wavelength side
is the poor man’s way to handle the otherwise diverging
interface width �h2�. There are two options to determine �h2�.
The first follows from a fit to Peq�h�, which is shown in Fig.
2. The second is a direct evaluation of �h2� from the recorded
data. The latter always gives a 1%–3% larger value, which
we attribute to optical artifacts due to confocal slicing. So we
are inclined to prefer the former value, which amounts to
�h2�=0.219 for statepoint II and 0.336 ��m�2 for statepoint
IV. Then Eq. �8� can be used to estimate the upper cutoff. On
the basis of a determination of � �see below� one finds values
around �=kmax��45, but this value is rather sensitive to
small variations in �: A variation of � by 10%–15% results
in a shift in � by a factor 2.

The correlation function �h�0 ,0�h�x ,0�� is of course also
measurable. In the Appendix we discuss the integral �2�; here
we give the result with the cutoff sent to � as follows:

�h�0,0�h�x,0�� =
kBT

2��
K0�x/�� . �10�

The divergence for x→0 of the modified Bessel function K0

corresponds to the divergence of the interface width without
a cutoff. A fit of the correlation function to the Bessel func-
tion �with a slight modification due to the cutoff� is shown in
Fig. 3. Apart from a few initial points the function fits quite
well. We find fitting parameters �=8.0 �m for statepoint II
and �=6.1 �m for statepoint IV. The values for � turn out to
be 58 nN/m for statepoint II and 21 nN/m for statepoint IV.

Fourier transforming the correlation function back to the
wavenumber domain should lead to expression �6� as a func-
tion of k. However, an inverse Fourier transform requires
accurate data for a large domain and the correlation function

is unreliable for large distances �not shown in Fig. 3�. This
prevents a direct check of the drumhead Hamiltonian.

III. MULTIPLE CORRELATION FUNCTIONS

Persistence times require the determination of multiple
correlations functions. As the data are stored for all sampled
positions we can determine the probability density on a se-
quence of events as follows:

Gn�h1,x1; . . . ;hn,xn� = �	�h�x1,0� − h1� ¯ 	�h�xn,0� − hn�� ,

�11�

which gives the joint probability that the interface at position
x1 has the height h1 and subsequently at position xi the
height hi, etc. A straightforward evaluation of Eq. �11� pro-
ceeds via writing the 	 functions as a Fourier integral and
then expressing h�x ,0� in terms of the amplitudes hk. As all
integrals are over a quadratic form in the exponent the result
is a Gaussian in the hi. It leads to the expression

Gn�h1,x1; . . . ;hn,xn� =  det g−1

�2��h2��n�1/2


exp�−
1

2�
i,j

gi,j
−1 hihj

�h2�� . �12�

In this notation the matrix gi,j is the correlation matrix

gi,j = g��xi − x j�,0� , �13�

which turns out to be the equal-time value of the height-
height correlation function

g��x − x��,t − t�� = �h�x,t�h�x�,t���/�h2� . �14�

A shortcut for deriving result �12� is to evaluate the follow-
ing integral in two ways:

� dh1 ¯ dhnhihjG�h1,x1; . . . ;hn,xn� = �h2�gi,j . �15�

The first uses definition �11� and obviously leads to the right
hand side of Eq. �15�. The second way uses expression �12�.
Then one has to diagonalize the quadratic form in the expo-
nent and the integration over the eigendirections also leads to
the right hand side of Eq. �15�, which shows that Eq. �13� is
correct.

In Eq. �14� and accordingly in result �12�, we have fac-
tored out �h2� because we want to use it as a scale for the

FIG. 2. The height distribution for statepoints II and IV as found experi-
mentally. The lines are Gaussian fits to the data.

FIG. 3. The spatial correlation function �h�x ,0�h�0,0�� for the statepoints II
�upper points� and IV �lower points� fitted to expression �10� using a cutoff.
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heights. Equation �12� shows that the correlation function g
dictates the behavior of the multiple correlation functions.

To give an impression on the behavior of the G’s we first
consider a few small values of n. For a single position �n
=1� the value g�0,0�=1 and Eq. �12� reduces to the equilib-
rium height distribution �5� as follows:

G1�h1� = Peq�h1� , �16�

which is shown in Fig. 2. From this probability we derive the
important probabilities q+�h� to find a height above h and
q−�h� for finding a height below h. They are given by the
expressions

q+�h� = �
h

�

Peq�h1�dh1, q−�h� = �
−�

h

Peq�h1�dh1.

�17�

In integrals such as Eq. �17�, one changes of course to the
combination h1 / �h2�1/2 as an integration variable, such that
the q��h� become functions of the scaled variable h / �h2�1/2.
The result of the integration in Eq. �17� is an error function
in this parameter. From now on we work with these reduced
heights.

The probability density G for n=2 is still sufficiently
simple to make it explicit. The matrix gi,j and its inverse gi,j

−1

read

gi,j =  1 g1,2

g2,1 1
� �18�

and

gi,j
−1 =

1

1 − g1,2
2  1 − g1,2

− g2,1 1
� . �19�

So G2 follows from the general definition as

G2�h1,0;h2,x� =
1

2��1 − g2�1/2exp�−
h1

2 − 2gh1h2 + h2
2

2�1 − g2� � ,

�20�

with g a shorthand for g1,2=g�x ,0� and x the distance of
sampling. Note that this expression is symmetric in the en-
tries h1 and h2 and that dependence only enters through g
=g�x ,0�.

IV. STATISTICS OF SEQUENCES

The probability densities �11� are measurable, but the
statistics becomes poor when too much entries are taken.
Therefore integrated probabilities are more accessible. For
what follows it is interesting to study the probability that a
sequence in space of precisely n successive values occurs of
the heights above the level h. The above given theory implies
that it is given by the ratio of two integrals

pn
+�h� = q−�n+�−�h�/q+−�h� , �21�

which will be shown below. In this notation the superscript
prescribes the integration domain. The numerator of Eq. �21�
reads

q−�n+�−�h� = �
−�

h

dh0�
h

�

dh1¯�
h

�

dhn


�
−�

h

dhn+1Gn+2�h0, . . . ,hn+1� . �22�

The integral over the first variable h0 guarantees that the
sequence starts below level h, the next n integrations select
points above the level h, and the sequence ends with hn+1

below level h. So the numerator in Eq. �21� selects the hills
of precisely n consecutive values of the height above level h.
We have omitted in Gn+2 the position arguments since it is
understood that points are equidistant. So the sequence of
values g�m�x ,0� enters, with 0�mn+2. The denominator
is the integral

q+−�h� = �
h

�

dh1�
−�

h

dh2G2�h1,h2� . �23�

It counts the number of hills since each hill is followed by a
transition from above to below the level h. The denominator
serves as a normalizing factor. Summing Eq. �21� over n
�from 1 to �� gives the total number of hills above h and as
this equals the number of crossings, we see that distribution
�21� is normalized. Thus expression �21� is the normalized
probability distribution for n successive points above the
level h.

The average length �+�h� of a sequence is defined as

�+�h� = �
n=1

npn
+�h� . �24�

We also looked to sequences below the height h. They are
given by the probability pn

−�h�, which follows from a similar
definition as Eq. �21�, with + and − interchanged. The up-
down symmetry of the problem yields the relation

pn
−�h� = pn

+�− h� . �25�

The average length �−�h� of a stretch below h similarly
equals

�−�h� = �
n=1

npn
−�h� . �26�

Inserting expression �21� into definition �24� for �+�h�, the
numerator in Eq. �22� is multiplied by the number of values
larger than h. Summation over all n leads to the average
number of points above the level h, which is given by inte-
gral �17�. Thus we arrive at the relations

���h� = q��h�/q+−�h� . �27�

The remarkable point about these relations is that, al-
though the probabilities pn

��h� are given by multiple inte-
grals, the averages ���h� result from simple integrals. The
q��h� are error functions and q+− is a twofold integral in-
volving the function G2, thus containing only the value
g��x ,0�.

A trivial result from Eq. �27� is that the ratio �+�h� /�−�h�
is the same as the ratio q+�h� /q−�h�. Both give the ratio of
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the total number of points above and below the level h. As
the q+�h� and q−�h� add up to 1, a more intriguing result
follows for the sum

�+�h� + �−�h� =
1

q+−�h,g�
. �28�

Deliberately we have given q+− also the argument g, which
incorporates the spatial dependence on x. Tacitly we have
assumed that this distance is the sampling distance �x. But
nothing prevents us from taking a multiple n of �x. Then g
will refer to g�n�x ,0�. In Fig. 4 we have plotted the experi-
mental values of q+−�h ,g� for various values of g�n�x ,0�,
which we take as a parameter on the horizontal axis. The
curves are the calculated values of q+−�h ,g�. We have not
found a closed expression for q+− in terms of known func-
tions, but a number of limits are explicitly obtainable. The g
dependence is exemplified by the case h=0, which reads

q+−�0,g� =
1

2
−

1

�
arctan1 + g

1 − g
�1/2

. �29�

The h dependence is by and large controlled by the limiting
behavior

q+−�h,0� = q+�h�q−�h� ,

�30�

q+−�h,g → 1� �
�1 − g

��2
exp�−

h2

2�h2�� .

Apart from the averages also the individual pn
��h� can be

measured and compared with theoretical expressions �21�. In
Fig. 5 we show pn

+�h� for statepoint IV as a function of h for
a number of n. The theory requires the evaluation of multiple

integrals �22�, which can be carried out by Monte Carlo in-
tegration. The best procedure is to generate a distribution
according to the Gaussian integrand and then reject the
points that fall outside the integration domain. This tech-
nique also applies to correlation functions for other histories
with another integration domain.

The theoretical curves are calculated up to n=8, which is
a practical limit. By the Monte Carlo integration we could
add a few more values, but the asymptotic behavior for large
n falls of course outside the range of this method. The agree-
ment between theory and experiment is good, but typically
there are deviations for larger negative values of h, where the
experimental points are systematically lower than the theo-
retical prediction.

V. THE DYNAMIC INTERFACE MODES

As Secs. III and IV show, the interface fluctuations have
a rich spatial structure. So it is an interesting question how
this compares with the interface fluctuations in time. The
temporal development of the interface is determined by the
macroscopic equations for the interface modes as well as by
the influence of thermal noise. In this section we briefly dis-
cuss the interface modes and in Sec. VI we treat the noise.

The problem of the interface modes has been addressed
by Jeng et al.,22 who have made an extensive study of the
interface modes in the various regimes distinguished by the
relative strength of viscosity and surface tension. The modes
are overdamped for our experimental conditions and decay
as

hk�t� = hk exp�− �kt� , �31�

with a rate

�k =
1

2tc
��k��−1 + k�� , �32�

where the capillary time tc is given by

tc =
�� + ���
�g���

. �33�

Here � and �� are the viscosities of the lower and upper
fluids. A few remarks on Eq. �31� are worth making.

• The dispersion relation �k is in general rather compli-
cated. Simplification �32� derives from the approxima-
tion ��k��k2, which is very well fulfilled for colloidal
interfaces with extremely low surface tension. The ap-
proximation is controlled by the number

�

L�

= �3��

g
�1/2 1

�� + ���2 , �34�

which is the ratio of the capillary length � to the viscous
length L�= ��+���2 /���. It is very small, 10−5, for col-
loidal interfaces, while it is very large for, e.g., water
�105�.

• The spectrum has a slowest mode with wavelength �
and decay rate tc, in contrast to the capillary waves of
molecular fluids, where the modes become slower the

FIG. 4. The function q+−�h ,g� as a function of x through g=g�x ,0�, for
some values of h �in units �h2�1/2�. The drawn lines are the calculated values
and the points are the measured values.

FIG. 5. The spatial pn
+�h� as a function of h for a number of n for statepoint

IV. The drawn lines are the theoretical values.
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longer the wavelength. This mode starts to dominate the
behavior of the correlations for long times.

VI. THE LANGEVIN EQUATION

The thermal influences can be incorporated by a fluctu-
ating force Fk�t� on mode k in the Langevin equation23

�hk

�t
= − �khk + Fk�t� . �35�

The first term on the right hand side is the systematic damp-
ing force, which by itself would lead to an exponential decay
of mode k. The random force Fk�t� has a zero average and is
assumed to be 	 correlated in time �white noise�,

�Fk�t�Fk��t��� = 	k+k�,0�k	�t − t�� , �36�

where �k can be found from the fluctuation-dissipation theo-
rem

�k

2�k
= ��hk�2� . �37�

Langevin equation �35� assumes that the slow capillary
waves form a complete set to characterize the motion of the
interface. �k is linked in Eq. �37� to the equilibrium average
of the amplitudes hk, which is given by Eq. �5�.

With the Langevin equation all time-dependent correla-
tion functions can be calculated. In particular, the height-
height correlation function follows as

�h�0,0�h�x,t�� = �h2�g�x,t� = �
k

��hk�2�exp�ik · x − �kt� ,

�38�

with ��hk�2� given by Eq. �6� and �h2� by Eq. �8�. Note that
for this correlation function the influence of the fluctuating
force Fk�t� averages out such that it depends only on the
macroscopic dynamics of the interface. It involves, apart
from the decay rate �k, only the thermal average ��hk�2�.
Some properties of the integral yielding this function are
listed in the Appendix.

The first point is the determination of � and tc from the
data. We represent �h�0 ,0�h�0 , t�� as

�h�0,0�h�0,t�� =
kBT

2��
H�t/tc,�� . �39�

Here again �=kmax�. In the Appendix we prove that

H�t/tc,�� = K0�t/tc� , �40�

with K0 the modified Bessel function of order 0. For t
� tc /�, the function H�t / tc ,�� is well represented by
K0�t / tc�. Since � is of the order 40–50 �see Sec. II�, expres-
sion �40� suffices for most of the measured points, except of
course for the first few points near t=0, where the right hand
side of Eq. �40� diverges. Leaving them out for the moment,
we find from a fit for statepoint II: tc=20 s and �
=66 nN /m and for statepoint IV: tc=33 s and �
=22 nN /m, which compare well with the values found from
the spatial dependence. Effectively tc acts as a horizontal
scale parameter and � as a vertical shift. tc is mainly deter-

mined by the asymptotic behavior, while � is more sensitive
to the initial behavior.

By adjusting the upper cutoff, the calculated g�0, t� as-
sumes the value 1 for t=0. In Fig. 6 we plot the experimental
values of �h2�g�0, t� together with the theoretically calculated
curves.

Finally we mention the initial behavior of g�0, t�. From
expansion �A15� we deduce

g�0,t� = 1 −
t

tc

�

ln�1 + �2�
+ ¯ . �41�

Here one sees that a finite � is essential for this initial be-
havior.

VII. PROBABILITIES ON HISTORIES

The noise term comes into the picture when we calculate
the distribution of the hk�t�. It follows from the Fokker–
Planck equation, which is equivalent with the Langevin
equation and reads23

�P�hk,t�
�t

= �k
�hkP�hk,t�

�hk
+

�k

2

�2P�hk,t�
�hk

2 . �42�

It gives the evolution of the probability distribution P�hk , t�
starting from an initial distribution P�hk ,0�. The solution23

of Eq. �42� provides the conditional probability of the mode
hk�t�, starting with the value hk�0� as follows:

P�hk�0��hk�t�� =
1

�2���hk�2��1 − e−2�kt��1/2


exp −
�hk�t� − hk�0�e−�kt�2

2��hk�2��1 − e−2�kt�
. �43�

The expression shows that, independent of the value of
hk�0�, the distribution asymptotically approaches equilibrium
distribution �5�.

For the measurements at different times �and possibly
different positions� we need the multiple time correlation
function

Gn�h1,x1,t1; . . . ;hn,xn,tn�

= �	�h�x1,t1� − h1� ¯ 	�h�xn,t1� − hn�� , �44�

FIG. 6. The correlation function �h�0, t�h�0,0��. The points are the experi-
mental values and the lines are the curves according to Eq. �40� using a
cutoff.
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giving the probability of a history that the interface is at time
t1 and position x1 at a height h1 and subsequently at time ti

and position xi at height hi. In order to evaluate these corre-
lation functions we have to translate the field h�x , t� into its
Fourier components hk. Then we have to use the joint prob-
ability on a set of components hk�t1� , . . . ,hk�tn�, which is
given by the product of equilibrium probability �8� for the
first event at t1 and the conditional probabilities �43� for the
successive time intervals, t2− t1 , . . . , tn− tn−1. The result of the
integration can be derived easily from the observation that
the h�x j , tj� are, as linear combinations of the basic variables
hk, also Gaussian random variables. So, similar to the deri-
vation of Eq. �12�, their distribution must be of the form

Gn�h1, . . . ,tn� =  det g−1

�2��h2��n�1/2

exp�−
1

2�
i,j

gi,j
−1 hihj

�h2�� .

�45�

The matrix gi,j is the correlation matrix

gi,j = g��xi − x j�,ti − tj� . �46�

The proof of Eq. �45� is exactly the same as that of Eq. �12�.
Equation �45� is the main result of the theory for the

histories. It relates the probability of a history h1 , . . . ,hn on a
sequence of snapshots to the height-height correlation func-
tion g�x , t�. The strong point of Eq. �45� is that the time-
dependent probability densities have exactly the same struc-
ture as the equal-time probabilities, when expressed in the
appropriate gi,j. Thus the whole analysis given above for the
equal-time correlations can be taken over for the more gen-
eral correlations. So we restrict ourselves for the time-
dependent histories to the aspects needing some extra atten-
tion.

The time-dependent probability density G2 reads as Eq.
�20� with g=g�0, t�. It can also be written as the product of
the equilibrium distribution Peq�h1� and the conditional prob-
ability Gc�h1 ,0 ,0 �h2 ,0 , t� that starting at h1 one arrives at h2

at time t later,

Gc�h1,0,0�h2,0,t� =
1

�2��1 − g2��1/2exp −
�h2 − h1g�2

2�1 − g2�
.

�47�

This expression cannot be seen as the “propagator” for the
probability, like Eq. �43� is for the Fourier components hk.
While the probabilities for modes k evolve as a Markov
process, the distribution for h�0 , t� does have a memory ef-
fect. Only if g�0, t� were a pure exponential the spatial pro-
cess would be Markovian too.23 Expression �38� shows that
g�0, t� it is not a pure exponential but a superposition of
exponentials. For longer times it starts to decay as an expo-
nential when the slowest mode begins to dominate, as can be
seen in Fig. 6.

VIII. AVERAGE NUMBERS OF HILLS AND VALLEYS

Consider now a sequence of snapshots, taken with time
intervals �t. We are again interested in the probabilities on
the duration of hills and valleys with respect to a level h. To
stress the analogy between space and time we use the same

notation pn
��h� for the probabilities to find a stretch of ex-

actly n consecutive values of the interface height above/
below the level h, where n now is an index in the time
direction. They are given by the same integrals as Eqs. �22�
and �23� with gi,j the temporal correlation matrix. The mean
values are called the residence time �+�h� �for pn

+�h�� and the
waiting time �−�h� �for pn

−�h��.
To check whether the experimental values follow these

theoretical predictions, we first checked that the ratio
�+�h� /�−�h� is the same q+�h� /q−�h� in analogy with Eq.
�27�. It is valid over several orders of magnitude. Only for
the very large h deviations occur due to poor statistics. In
Fig. 7 we now plot again the calculated values of q+−�h ,g� as
a function of the parameter g=g�0, t�, for a number of h
values. The upper curve in Fig. 7 for h=0 is given by Eq.
�29�. In this figure the experimental values are plotted as
follows. We take as time interval a multiple n of the smallest
interval �t and determine for this sampling rate the �’s. This
leads to experimental values of q+−�h ,g�, which we plot in
the figure at the value g=g�n�t�. The curves for a fixed value
of h are statepoint independent; the figure shows that this is
pretty well the case.

Finally we plot in Fig. 8 the dependence of the �’s on h
for three choices of the time interval. The curves are confus-
ing at first sight, since the values of ���h� are about the same
for all three choices. So, if we multiply them with the value
of the chosen time interval, in order to convert them from
numbers to real times, we get substantial different times.
This indicates that the residence and waiting times depend
strongly on the measuring process.

The fact that the smallest chosen time interval leads to
the smallest value of the residence and waiting times natu-
rally poses the following question: What will happen in the
limit of vanishingly small time interval �t? Theoretically it
relies on the behavior of the correlation function g�t� in the
limit t→0. We presented in Eq. �41� the behavior as it fol-
lows from capillary wave theory. A linear approach of g to 1
implies that �+−�h� increases as the inverse power of the
square root of �t. Then, after multiplying with �t in order to
get their values in real time, the residence and waiting times

FIG. 7. The function q+− as a function of t represented by g=g�0, t�, for
h=−1 �filled squares�, h=0 �circles�, and h=1 �semifilled pentagons�. The
drawn lines are calculated values and the points are the measured values.
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vanish as the square root of �t. This problem was noticed in
Ref. 16. However, the slope of the linear term in Eq. �41�
depends on a molecular quantity �, which indicates that
wavelengths matter for which the mesoscopic capillary wave
theory is not designed.5 One could argue that for molecular
times, the cusp in g�0, t� is rounded off to a parabola �since it
is time reversal invariant�. Then this parabola would com-
pensate the square root in Eq. �30� and the residence and
waiting times would approach a finite limit.16

Unfortunately this scenario cannot be tested experimen-
tally, given the present limits on the sampling frequency.
However, there is an interesting sampling regime beyond our
data, for which the capillary wave theory still holds. In Fig. 7
the data go up to the value g�0.8. The typical square root
decay of the curves for q+−�h ,g� cannot be tested with our
data. A microscope, which is faster by a factor 10, could
enter this regime where the typical signature of the Brownian
character of the fluctuations is most significant. They give
increasingly larger weight to short living hills and valleys,
which force the mean values to shrink in a specific way
predicted by the presented theory.

The same issue presents itself in the analysis of the data
for a single time as a function of the sampling distance, but
in a less severe way. In the Appendix it is shown that the
height-height correlation as a function of the distance is a
parabola for short distances. Thus a finite value of the se-
quence length and the recurrence length would follow in the
limit of continuous sampling. However, again we do not
reach the regime and the theoretical limiting values are
strongly dependent on the cutoff �, where the capillary wave
theory breaks down.

IX. DEPENDENCE OF pn
±
„h… ON n AND h

We plot in Fig. 9 the experimental curves for pn
+�h� for a

large number of n for statepoint IV. A noteworthy point is
that only for rather large values of n the decay with n �time�
becomes exponential. To calculate the persistence exponent
governing the decay is the challenging problem alluded to in
Sec. I.

The scatter in the data is modest, even for large n corre-
sponding to large times t. Thus the experiment provides a
host of detailed information on the statistics of the fluctua-
tions in a wide time range.

Another way of plotting the data is to select one value of
n and plot pn

��h� as a function of h. Figure 10 shows the
experimental data for statepoint IV for pn

+�h�.
This way of presenting the data facilitates the compari-

son with the theory. The drawn lines are the theoretical val-
ues as given by Eq. �21�. We reiterate that the input in the
calculations is a set of n+2 experimental values of g�0, t�.
The agreement between theory and experiment is remarkable
for these detailed data. Statepoint II gives similar results with
a slight asymmetry between up and down, of the same type
as deviations in the spatial correlation functions, shown in
Fig. 5.

The data for pn
−�h� have been independently collected.

Symmetry �25� is very well obeyed, such that there is no
point in showing these data separately.

X. DISCUSSION

The above given analysis of the statistics of interface
fluctuations naturally falls into two parts, in which the
height-height correlation function g�x , t� plays a pivotal role.
The first part concerns the connection between g�x , t� and the
state parameters such as ��, �, and �. The second part is the
determination of the multiple correlation functions
G�h1 , . . . , tn� from g�x , t� through Eq. �45�. In the first part
we have used the data for g�x , t� to determine the state pa-
rameters. Even though the derivation of the structure of

FIG. 8. Values of ���h� as a function of h for three time intervals for three
intervals �t, 2�t, and 4�t.

FIG. 9. The temporal pn
+�h� for statepoint IV, for h=−1 �squares�, h=0

�circles�, and h=1 �pentagons�. The fillings correspond to time intervals
�t=0.5 s �open�, 2�t �semifilled�, and 4�t �filled�.

FIG. 10. The temporal pn
+�h� as a function of h for a number of n for

statepoint IV. The drawn lines are the theoretical values.
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g�x , t� in space and in time is quite different, the behavior is
remarkably similar if the space and time variables are prop-
erly scaled �see Eqs. �10� and �40��.

The second part has been our main concern. We used the
measured g�x , t� as input, providing all the necessary infor-
mation on the statistics of the snapshots. The advantage of
splitting the problem into these two parts is that the second
part is not confounded by errors in the first. The only as-
sumption in the theory is the use of the Langevin equation
for the effect of the thermal �white� noise. The best justifica-
tion for this procedure is a posteriori through its conse-
quences. In view of the successful agreement with the ex-
perimental results, the assumption appears to be very well
fulfilled.

Experimentally the capillary waves are disentangled
from the structure of the intrinsic interface. Most amazing is
that detailed correlations in capillary waves can be deter-
mined with high accuracy. The statistics of the temporal de-
pendence is generally better than that of the spatial behavior.
We have chosen only a limited set of obtainable correlation
functions in order to compare them with the theoretical cal-
culations. Experimentally it is easy to collect data for prac-
tically any interesting n. In Figs. 5 and 9 we show the dis-
tribution pn

+�h� as a function of n for the values h=−1, 0,
and 1.

There is a simplifying aspect in the fact that experimen-
tally only sequences of finite time intervals can be measured.
So one does not know what the interface does in between
two snapshots. But this is precisely the reason why it suffices
to calculate the correlation functions defined in Sec. IV. Here
also one does not specify the evolution in between two snap-
shots. For instance, the key quantity q+−�h ,g� for the resi-
dence and waiting times involves the crossing of the level h
by the interface. But it does not say that it may cross it only
once! Any odd number of crossings is possible. In Fig. 7,
where we compare q+−�h ,g� with experiment, large time in-
tervals feature �corresponding to small g� and in these large
time intervals crossings are frequently taking place. Also the
hills and valleys of length n, for which the distribution is
given in Figs. 5 and 10, may be interrupted by opposite
values in between snapshots. The charm of the comparison is
that both theory and experiment allow these possibilities.

Of course, even though overall the comparison between
theory and experiment is very good, upon close inspection
there are always slight differences, some of which seem to be
systematic. E.g., as we noted in the discussion of Fig. 2,
fitting the distribution of heights gives a 1%–3% smaller
value for �h2� than when this average is determined directly
from the data. Likewise, in Fig. 5 there appear to be small
systematic deviations between theory and experiments for
large heights, and in Fig. 6 for early times for the lower
curve corresponding to statepoint IV. We are at this point not
sure about the origin of these discrepancies, but wonder
whether these could be due to coupling to decomposition
modes associated with the fact that we have a binary liquid.24

Further study will be needed to settle these issues.
In this paper we have restricted ourselves to sequences

of height measurements at the same time or at the same
position. General result �45� shows that one could equally

well correlate snapshots at combinations of times and posi-
tions and do a similar statistical analysis. The only point that
matters is the height-height correlation gi,j between the
events i and j. Also one does not need to worry in how much
the measurements refer to a single point or to an area of finite
size. These more collective variables are also linear combi-
nations of the basic variables hk and therefore also Gaussian
randomly distributed. Then taking the measured correlations
between the more general variables as input leads to exactly
the same analysis as given here for point variables.

Theoretically remains the problem of calculating the
asymptotic decay of the probabilities pn

��h� for large n from
the measured height-height correlation function g�x , t�. The
fact that the first few calculated values �n9� agree quite
well with the measured data encourages to attack this �classic
unsolved16,17� problem in this specific context where ample
experimental data are available.
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APPENDIX: THE HEIGHT-HEIGHT CORRELATION
INTEGRAL

In this appendix we discuss some properties of the
height-height correlation function g�x , t�. We start with the
equal-time function g�x ,0�. Using the scaled integration vari-
able y=k� the integral for g�x ,0� leads to

g�x,0� =
2

log�1 + �2��0

�

ydy
J0�xy/��
1 + y2 �A1�

where �=kmax� is the cutoff. Sending this value to � yields
the modified Bessel function K0 as follows:

�
0

�

ydy
J0�xy/��
1 + y2 = K0�x/�� . �A2�

For finite � we can make a short distance expansion, reading

�
0

�

ydy
J0�xy/��
1 + y2 =

1

2
log�1 + �2�

+  x

�
�2�2 − log�1 + �2�

2
� + ¯ .

�A3�

Matching the small argument expansion of K0�x /��,
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K0�x/�� = log�x/2�� − 0.57721 + ¯ �A4�

with Eq. �A3� gives for the point where they cross the ap-
proximate value

x �
�

�
. �A5�

The behavior in the time direction is remarkably similar
to the spatial direction, although the integral for g�0, t� looks
quite different. We write

g�0,t� =
2

log�1 + �2�
H�t/tc;�� , �A6�

with H�z ;�� as the integral

H�z;�� = �
0

� ydy

1 + y2exp�− z�y + y−1�/2� . �A7�

The first point is to prove relation �40�, which we do by
showing that

dH�z,��
dz

= − K1�z� , �A8�

and checking the asymptotic expansion of Eq. �40� for large
z. The advantage of Eq. �A8� is that

dH�z;��
dz

= −
1

2
�

0

�

dy exp�− z�y + y−1�/2� �A9�

is a simpler integral than Eq. �A7�. Then take x=ln y as
integration variable, which turns Eq. �A9� into

dH�z;��
dz

= −
1

2
�

−�

�

dxex exp�− z cosh x� . �A10�

Splitting the integral into pieces from −� to 0 and from 0 to
� and changing in the first part from x to −x yield the rela-
tion

dH�z;��
dz

= − �
0

�

dx cosh x exp�− z cosh x� . �A11�

The integral is a representation of the function K1�z�.25

In order to show that no constant is lost in going from
Eq. �40� to Eq. �A8� one can check the asymptotic expansion
of Eq. �40� for large z, which follows from an expansion
around the slowest mode for y=1 as follows:

y + y−1 = 2 + �y − 1�2 + ¯ , �A12�

and replacing the integral with a full Gaussian around y=1.
Then one gets

H�z;�� �
e−z

2
�

−�

�

d�y − 1�exp�− �y − 1�2z/2�

= e−z �

2z
�1/2

, �A13�

which matches the asymptotic expansion of K0�z�.
The final point is the expansion for small times t / tc for a

finite value of �. We expand the exponential

exp�− �y + y−1�z/2� = 1 − �y + y−1�z/2 + ¯ �A14�

and insert this expansion into integral �A7�. Then we find for
H�z ;��

H�z;�� =
1

2
ln�1 + �2� −

�

2
z + ¯ . �A15�

Note that the next term in this expansion leads to a logarith-
mically divergent integral at the small y side. Thus the next
term is not of the order z2 but of the order z2 ln z. The finite
� integral stays finite in contrast to K0�z�, which diverges for
z=0. With expansions �A4� and �A15� we find for the point
where the finite-� curve starts to deviate from the K0�z� as
follows:

t � tc/� . �A16�

One obtains the rough estimate z�1 /� for this matching
point, by looking to the value of the exponential at the upper
boundary, which is exp�−z��+�−1� /2�. For larger values the
boundary value starts to vanish and extending the integral to
infinity leads to a small error. For smaller values of this z, the
exponent of the exponential becomes smaller than 1 at the
boundary and the integrand of Eq. �A7� has not yet died out
at y=�. Then deviations from the infinite domain start to
show up.
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