245 research outputs found

    Towards improved biomonitoring tools for an intensified sustainable multi-use environment.

    Get PDF
    The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays

    Molecular mechanisms of adaptation of soil bacteria to chlorinated benzenes

    Get PDF
    The pollution of our environment with a large number of different organic compounds poses a serious threat to existing life, since many of these chemicals are toxic or are released in such quantities that exceed the potential of biological detoxification and degradation systems. Bacteria and other microorganisms play an essential role in the breakdown of xenobiotic compounds. Microbes use these compounds as carbon and energy source and metabolize them to harmless endproducts. However, not all compounds are easily metabolized and some structures resist the action of existing enzyme systems in bacteria. Nevertheless, bacterial species have been isolated which have overcome these metabolic barriers and completely metabolize chemicals that were previously considered to be persistent.The project of this thesis was initiated to study the genetic mechanisms in bacteria that cause adaptation to use xenobiotic compounds as novel growth substrates (see Chapter I for a review). The work presented here mainly focused on one class of compounds, i. e. lower chlorinated benzenes such as dichlorobenzenes (DCB) and 1,2,4- trichlorobenzene (1,2,4-TCB). These compounds were known to be very resistant to biodegradation by bacteria. A number of bacterial species was isolated by enrichment techniques which were able to use DCB's and/or 1,2,4-TCB as sole carbon and energy source for growth. One of these bacteria, Pseudomonas sp. strain P51, was investigated further in this study. We have obtained strong evidence that the pathway for chlorobenzene metabolism arose as a consequence of the unique combination of two gene clusters, each specifying part of the complete pathway. These individual gene clusters are not uncommon and probably exist separately in different bacteria. Our results suggest that one of the gene clusters is contained in a novel transposable element that may have been acquired by strain P51 and integrated into a catabolic plasmid that already contained the other gene cluster. A further fine-tuning of the new pathway may have occurred through specialization of individual enzymes towards novel metabolic intermediates and by changes in the regulatory system in response to novel inducer molecules.The degradation of DCB's and 1,2,4-TCB was studied at concentrations between 10 μg/l and 1 mg/l in soil percolation columns filled with sediment of the Rhine river, which in some cases were inoculated with Pseudomonas sp. strain P51 (Chapter 2). In the inoculated columns, DCB's and 1,2,4-TCB were instantly degraded. Strain P51 remained viable in the column as long as the chlorinated benzenes were fed in the influent. Interestingly, minimal concentrations of the chlorinated benzenes were measured in the effluent of the columns, independently of the influent concentrations used (6 ± 4 μg/l for 1,2-DCB; 20 ± 5 μg/l for 1,2,4-TCB; more than 20 μg/l for 1,3-DCB and 1,4-DCB), which could not be lowered by additional inoculations with strain P51. The native microbial population in the noninoculated columns adapted to degrade 1,2-DCB after a lag phase of about 60 days, and was then able to remove a concentration of 25 μg/l of 1,2-DCB in the influent to less than 0.1 μg/l.Detailed genetic studies were carried out with Pseudomonas sp. strain P51 to characterize the genetic determinants for chlorobenzene metabolism. A large plasmid of 110 kilobase-pairs (kb) (pP51) could be isolated from cells that were cultivated on 1,2,4- TCB (Chapter 3). This plasmid could be cured from the strain by successive inoculations on non-selective media, rendering the strain incapable of metabolizing chlorinated benzenes. Subsequent cloning and deletion experiments in Escherichia coli, Pseudomonas putida, and Alcaligenes eutrophus showed that two regions on plasmid pP51 were responsible for chlorobenzene metabolism. Expression studies in E. coli revealed that a 5-kb region encoded the activity to convert 1,2,4-TCB and 1,2-DCB to 3,4,6-trichlorocatechol and 3,4-dichlorocatechol, respectively. This activity was determined using whole cell incubations, and in analogy with other described catabolic pathways it was proposed that the activity was caused by a chlorobenzene dioxygenase multienzyme complex and a dehydrogenase (encoded by tcbA and tcbB, respectively). Separated from the chlorobenzene dioxygenase gene cluster by approximately 6 kb a region was located which contained the genes for the conversion of chlorocatechols. Different DNA fragments of this region of pP51 were cloned in expression vectors in E. coli, P. putida and A. eutrophus. Both P.putida KT2442 and A. eutrophus JMP222 could be complemented for growth on 3-chlorobenzoate by a 13-kb fragment of pP51, which indicated that a functional pathway for degradation of chlorocatechols was encoded on this fragment. Enzyme activity measurements and transformation reactions with 3,4-dichlorocatechol in cell extracts of E. coli harboring cloned pP51 DNA fragments showed the activity of three enzymes, chlorocatechol 1,2-dioxygenase (catechol 1,2-dioxygenase II), chloromuconate cycloisomerase (cycloisomerase II), and dienelactone hydrolase II. The genes encoding these activities were designated tcbC, tcbD, and tcbE, respectively, and their deduced gene order was found to be tcbC-tcbD- tcbE. It was thus proposed that 3,4-dichlorocatechol was converted via a chlorocatechol oxidative pathway (or modified ortho cleavage pathway), similar to that described in Pseudomonas sp. strain B 13 and A. eutrophus JMP134 , leading finally to the formation of 5-chloromaleylacetate. The release of one chlorine atom from 3,4- dichlorocatechol was shown to take place spontaneously during lactonization in the cycloisomerization reaction.The genes of the chlorocatechol oxidative pathway of strain P51 are organized in a single operon, comprising a region of 5.5 kb, which was fully sequenced and contained five large open reading frames (Chapter 4). The gene products of the different open reading frames were analyzed by subcloning appropriate pP51 DNA fragments in E. coli expression vectors. Expression studies confirmed the previously determined gene order and could attribute three open reading frames to the gene loci tcbC, tcbD, and tcbE, respectively. In between tcbD and tcbE an 1,022 bp open reading frame was present (ORF3), but we could not detect any protein encoded by this ORF. Immediately downstream of tcbE another ORF was found, designated tcbF, which encoded a 38 kDa protein. Until now, no clear function has been attributed for the tcbF gene product. The tcbCDEF genes and their encoded gene products showed high (50.6% - 75.7%) homology to two other chlorocatechol oxidative gene clusters, clcABD of P.putida (pAC27) and tfdCDEF of A. eutrophus JMP134(pJP4). Furthermore, a homology of 22% and 43.9% was found of TcbC and TcbD to CatA and CatB, respectively, the catechol 1,2-dioxygenase and cycloisomerase of the β-ketoadipate pathway of Acinetobacter calcoaceticus. This suggests that the chlorocatechol oxidative pathway originated from other, more common, metabolic pathways. Despite the strong DNA and amino acid sequence homology of the genes and enzymes of the chlorocatechol oxidative pathways, the substrate range of the pathway enzymes from the three organisms differed subtly. This was demonstrated for the chlorocatechol 1,2- dioxygenases TcbC, ClcA, and TfdC. In contrast to ClcA and TfdC, which showed a high relative activity for 3,5-dichlorocatechol, TcbC exhibited a strong preference for 3,4- dichlorocatechol and a weak affinity for the 3,5-isomer. This suggested that the tcb -encoded pathway enzymes had become specialized for intermediates (i.e. 3,4- dichlorocatechol) which arise in the metabolism of the novel compound 1,2- dichlorobenzene. Different genetic mechanisms may cause the divergence of genes and allow a specialization of encoded proteins (see also Chapter 1). Recently it has been proposed that slippage of short sequence repetitive motifs and subsequent mismatch repair would be the major driving force for rapid evolutionary divergence, rather than single base-pair substitutions. Detailed DNA sequence comparisons between the chlorocatechol 1,2-dioxygenase genes tcbC , clcA , and tfdC gives evidence for slippage of short sequence repetitions in regions of strong divergence in amino acid sequence.The transcription of the tcbCDEF operon was found to be regulated by the gene product of tcbR, a gene located upstream of and divergently transcribed from the tcbC gene. The tcbR gene was characterized by DNA sequencing and expression studies in E. coli and appeared to encode a 32 kDa protein (Chapter 5). The activity of the tcbR gene was analyzed in P.putida KT2442 harboring the cloned tcbR and tcbCDEF genes by determining the activity of the chlorocatechol 1,2-dioxygenase TcbC during growth on 3-chlorobenzoate. Strains of P.putida KT2442, which carried a frame shift mutation in the tcbR gene, could no longer induce tcbC expression during growth on 3-chlorobenzoate, suggesting that TcbR functions as a positive regulator of tcbC expression. A region of 150-bp is separating tcbR and tcbC, the first gene of the tcbCDEF cluster, and contains the expression signals needed for the transcriptional activation of tcbCDEF by the tcbR gene product. The transcriptional start sites of tcbR and tcbC were determined by primer extension analysis and this showed that the two divergent promoter sequences of the genes overlap. Protein extracts of both E. coli overproducing TcbR and of Pseudomonas sp. strain P51 showed specific DNA binding to this 150-bp region. TcbR probably regulates tcbCDEF expression and autoregulates its own expression, by binding the DNA region containing the promoters of tcbC and tcbR. It is likely that an inducer molecule interacts with TcbR, which may cause alterations or partially unwinding of the bound region and stimulation of RNA polymerase to start transcription of the tcbCDEF operon. Amino acid sequence comparisons indicated that TcbR is a member of the LysR family of transcriptional activator proteins and shares a high degree of homology with other activator proteins involved in regulating the catabolism of aromatic compounds, such as CatM, CatR and NahR. Detailed studies have recently been carried out to determine the precise interaction of TcbR with its operator region by DNasel footprinting. It would be interesting to see if in analogy with the specialization of TcbC, TcbR has diverged from a more common regulator protein such as CatM or CatR, and became specialized in recognizing chorinated inducer molecules.DNA sequence analysis of the start of the chlorobenzene dioxygenase cluster revealed the presence of an insertion element, IS 1066 (Chapter 6). An almost exact copy of this element, IS 1067, was discovered on the other side of this gene cluster, although oriented in an inverted position. Thus, the complete genetic element formed by IS 1066, the tcbAB gene cluster, and IS 1067, resembled a composite bacterial transposon. The functionality of this transposon, which was designated Tn 5280 , was established by inserting a 12-kb Hin dIII fragment of pP51 containing Tn 5280 , marked with a kanamycin resistance gene in between the IS-elements, into the suicide donor plasmid pSUP202 followed by conjugal transfer to P.putida KT2442. Analysis by DNA hybridization of transconjugants with acquired kanamycin resistance showed that Tn 5280 had transposed into the genome of this strain at random and in single copy. The insertion elements IS 1066 and IS 1067 were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and Agrobacterium rhizogenes, and were distantly related to IS 630 of Shigella sonnei. The presence of the tcbAB genes on Tri 5280 suggested a mechanism by which a chlorobenzene dioxygenase gene cluster was mobilized as a gene module by the mediation of IS-elements. This gene module was then joined with the chlorocatechol gene cluster to form the novel chlorobenzene pathway.To obtain more information on the distribution of chlorobenzene degradation genes in the environment, different methods were applied which were based on DNA- DNA hybridization with gene probes derived from chloroaromatic metabolism (Chapter 7). A number of bacterial strains which were isolated by selective enrichment from soil samples for growth on chloroaromatic compounds .was screened for the presence of catabolic plasmids. Hybridization of these plasmid-DNA's with DNA fragments of the tcbAB or tcbCDEF genes revealed a class of plasmids which were identical or homologous to plasmid pP51 of strain P51. In other experiments soil microorganisms were directly extracted from soil samples, plated on nonselective media and screened by DNA-DNA colony hybridization for the presence of catabolic genes with a set of probes for three chlorocatechol 1,2-dioxygenase genes (tcbC, clcA, and tfdC). Positively reacting colonies were obtained under selective conditions with a frequency of 1 to 5 per 2000, which indicated that in the soil samples microorganisms were present which contained DNA sequences homologous to the used probes. However, from additional screening and hybridization experiments of these positively reacting colonies it became clear that some of these were false positives. Furthermore, positive strains were lost easily during transfer from the original agar plates due to the heterogeneity in colony types of the different soil microorganisms. In a third method the variation of chlorocatechol 1,2-dioxygenase genes among soil microorganisms was analyzed by amplifying total DNA from soil samples in the polymerase chain reaction, which was primed with degenerate oligonucleotides derived for conserved regions in tcbC, clcA, and tfdC. Discrete amplified fragments were obtained in this manner, which were cloned and analyzed by hybridization and DNA sequencing. We found six different types of fragments which had the expected size, only one of which was related significantly to the chlorocatechol 1,2-dioxygenase (and in fact was identical to the tcbC- type). This indicated that it was possible to detect and isolate chlorocatechol 1,2-dioxygenase sequences from soil DNA although the selectivity of the amplification reaction was relatively low.In this study, we have entered a field of microbial research which will have continuing evolutionary and environmental interest. A detailed genetic characterization of bacteria which adapted to use xenobiotic compounds as novel growth and energy subsrates, suggested different mechanisms by which novel metabolic pathways evolve in bacteria. Our results presented evidence for i) a specialization of enzyme systems and ii) an exchange and combination of pre-existing gene modules. Still we do not know what the capacity of microorganisms present in the natural environment is to adapt rapidly to metabolize xenobiotic substrates, nor do we know how and which environmental factors influence genetic adaptation. Astonished by the diversity of genetic mechanisms displayed in bacteria which govern evolutionary change, we shouldn't be surprised to find mechanisms which direct and regulate genetic adaptation in response to changing environmental conditions

    Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery.

    Get PDF
    The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase

    Operational Control of Internal Transport

    Get PDF
    Operational Control of Internal Transport considers the control of guided vehicles in vehicle-based internal transport systems found in facilities such as warehouses, production plants, distribution centers and transshipment terminals. The author's interest of research having direct use for practice has resulted in a combination of theoretical and practical research in vehicle-based internal transport systems. An overview is given of the related literature and results are presented that show how different vehicle dispatching rules behave in different environments

    Draft Genome Sequence of Plantibacterflavus Strain 251 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site.

    Get PDF
    Plantibacter flavus isolate 251 is a bacterial endophyte isolated from an Achillea millefolium plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an infrequently reported genus Plantibacter, highlighting an endophytic lifestyle and biotechnological potential

    Physiological and transcriptome changes induced by Pseudomonas putida acquisition of an integrative and conjugative element.

    Get PDF
    Integrative and conjugative elements (ICEs) comprise ubiquitous large mobile regions in prokaryotic chromosomes that transmit vertically to daughter cells and transfer horizontally to distantly related lineages. Their evolutionary success originates in maximized combined ICE-host fitness trade-offs, but how the ICE impacts on the host metabolism and physiology is poorly understood. Here we investigate global changes in the host genetic network and physiology of Pseudomonas putida with or without an integrated ICEclc, a model ICE widely distributed in proteobacterial genomes. Genome-wide gene expression differences were analyzed by RNA-seq using exponentially growing or stationary phase-restimulated cultures on 3-chlorobenzoate, an aromatic compound metabolizable thanks to specific ICEclc-located genes. We found that the presence of ICEclc imposes a variety of changes in global pathways such as cell cycle and amino acid metabolism, which were more numerous in stationary-restimulated than exponential phase cells. Unexpectedly, ICEclc stimulates cellular motility and leads to more rapid growth on 3-chlorobenzoate than cells carrying only the integrated clc genes. ICEclc also concomitantly activates the P. putida Pspu28-prophage, but this in itself did not provoke measurable fitness effects. ICEclc thus interferes in a number of cellular pathways, inducing both direct benefits as well as indirect costs in P. putida

    Genome-wide gene expression changes of Pseudomonas veronii 1YdBTEX2 during bioaugmentation in polluted soils.

    Get PDF
    Bioaugmentation aims to use the capacities of specific bacterial strains inoculated into sites to enhance pollutant biodegradation. Bioaugmentation results have been mixed, which has been attributed to poor inoculant growth and survival in the field, and, consequently, moderate catalytic performance. However, our understanding of biodegradation activity mostly comes from experiments conducted under laboratory conditions, and the processes occurring during adaptation and invasion of inoculants into complex environmental microbiomes remain poorly known. The main aim of this work was thus to study the specific and different cellular reactions of an inoculant for bioaugmentation during adaptation, growth and survival in natural clean and contaminated non-sterile soils, in order to better understand factors limiting bioaugmentation. As inoculant we focused on the monoaromatic compound-degrading bacterium Pseudomonas veronii 1YdBTEX2. The strain proliferated in all but one soil types in presence and in absence of exogenously added toluene. RNAseq and differential genome-wide gene expression analysis illustrated both a range of common soil responses such as increased nutrient scavenging and recycling, expression of defense mechanisms, as well as environment-specific reactions, notably osmoprotection and metal homeostasis. The core metabolism of P. veronii remained remarkably constant during exponential growth irrespective of the environment, with slight changes in cofactor regeneration pathways, possibly needed for balancing defense reactions. P. veronii displayed a versatile global program, enabling it to adapt to a variety of soil environments in the presence and even in absence of its target pollutant toluene. Our results thus challenge the widely perceived dogma of poor survival and growth of exogenous inoculants in complex microbial ecosystems such as soil and provide a further basis to developing successful bioaugmentation strategies

    Draft Genome Sequence of Microbacterium foliorum Strain 122 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site.

    Get PDF
    Microbacterium foliorum strain 122 is a bacterial endophyte isolated from a Dactylis glomerata plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an endophytic strain that has promising potential in hydrocarbon degradation and plant growth promotion

    Insights into Mobile Genetic Elements of the Biocide-Degrading Bacterium Pseudomonas nitroreducens HBP-1.

    Get PDF
    The sewage sludge isolate Pseudomonas nitroreducens HBP-1 was the first bacterium known to completely degrade the fungicide 2-hydroxybiphenyl. PacBio and Illumina whole-genome sequencing revealed three circular DNA replicons: a chromosome and two plasmids. Plasmids were shown to code for putative adaptive functions such as heavy metal resistance, but with unclarified ability for self-transfer. About one-tenth of strain HBP-1's chromosomal genes are likely of recent horizontal influx, being part of genomic islands, prophages and integrative and conjugative elements (ICEs). P. nitroreducens carries two large ICEs with different functional specialization, but with homologous core structures to the well-known ICEclc of Pseudomonas knackmussii B13. The variable regions of ICEPni1 (96 kb) code for, among others, heavy metal resistances and formaldehyde detoxification, whereas those of ICEPni2 (171 kb) encodes complete meta-cleavage pathways for catabolism of 2-hydroxybiphenyl and salicylate, a protocatechuate pathway and peripheral enzymes for 4-hydroxybenzoate, ferulate, vanillin and vanillate transformation. Both ICEs transferred at frequencies of 10 <sup>-6</sup> -10 <sup>-8</sup> per P. nitroreducens HBP-1 donor into Pseudomonas putida, where they integrated site specifically into tRNA <sup>Gly</sup> -gene targets, as expected. Our study highlights the underlying determinants and mechanisms driving dissemination of adaptive properties allowing bacterial strains to cope with polluted environments
    corecore