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Abstract: The sewage sludge isolate Pseudomonas nitroreducens HBP-1 was the first bacterium known
to completely degrade the fungicide 2-hydroxybiphenyl. PacBio and Illumina whole-genome
sequencing revealed three circular DNA replicons: a chromosome and two plasmids. Plasmids were
shown to code for putative adaptive functions such as heavy metal resistance, but with unclarified
ability for self-transfer. About one-tenth of strain HBP-1′s chromosomal genes are likely of recent
horizontal influx, being part of genomic islands, prophages and integrative and conjugative elements
(ICEs). P. nitroreducens carries two large ICEs with different functional specialization, but with
homologous core structures to the well-known ICEclc of Pseudomonas knackmussii B13. The variable
regions of ICEPni1 (96 kb) code for, among others, heavy metal resistances and formaldehyde
detoxification, whereas those of ICEPni2 (171 kb) encodes complete meta-cleavage pathways for
catabolism of 2-hydroxybiphenyl and salicylate, a protocatechuate pathway and peripheral enzymes
for 4-hydroxybenzoate, ferulate, vanillin and vanillate transformation. Both ICEs transferred
at frequencies of 10−6–10−8 per P. nitroreducens HBP-1 donor into Pseudomonas putida, where they
integrated site specifically into tRNAGly-gene targets, as expected. Our study highlights the underlying
determinants and mechanisms driving dissemination of adaptive properties allowing bacterial strains
to cope with polluted environments.

Keywords: Pseudomonas azelaica; integrative and conjugative elements; ICEclc; aromatic compounds;
heavy metal; adaptation; evolution

1. Introduction

The recent industrial revolution has driven the intensive exploitation of natural resources and
heavy use of chemicals, leading to massive environmental pollution. Besides its potential harmful
effects on human health, pollution also strongly impacts the functionality of ecosystems. Even at
the microbial level, polluting substances pose a strong selection, leading to the disappearance of
sensitive strains, and the enrichment of adapted and resistant strains [1]. In some instances of organic
pollution, strains have evolved to metabolize and transform the compounds under scrutiny [1].
Pollutant-degrading bacteria have attracted interest, because they may be applied to directly or
indirectly remediate pollution and restore ecosystem health [1,2]. The inoculation of specific strains,
such as Pseudomonas sp. JS150, Pseudomonas knackmussii B13, or Pseudomonas veronii 1YdBTEX2, has
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been shown to significantly enhance biodegradation of pollutants such as phenol, chlorobenzoate,
benzene, toluene or xylene [3–5].

Pseudomonas nitroreducens HBP-1 (DSM 8897, previously named Pseudomonas azelaica HBP-1),
was isolated in 1988 from sewage sludge in California [6], and is one of the rare bacteria able to
completely degrade and use the biocide 2-hydroxybiphenyl (2HBP) as the sole carbon and energy
source [6]. The metabolic pathway for 2HBP conversion in P. nitroreducens HBP-1 has been biochemically
and genetically characterized in detail [6–11]. The enzymes responsible for the first steps of 2HBP
metabolism are encoded by the hbpCAD locus. A broad-spectrum monooxygenase (HbpA) catalyzes
the hydroxylation of 2HBP and a wide range of other 2-substituted phenols to their corresponding
catechols [10]. Subsequent action of a dioxygenase (HbpC) leads to the cleavage of the hydroxylated
ring, which is then converted to benzoate and 2-hydroxy-2,4-pentadienoic acid by means of the HbpD
hydrolase. Both compounds are further metabolized via meta-cleavage degradation pathways.
The expression of the hbpCAD genes is regulated at the transcriptional level by the sigma-54-dependent
activator HbpR in the presence of 2HBP (or analogous molecules) [12–14].

The genomes of P. nitroreducens HBP-1 as well as its close relative P. azelaica strain Aramco J
were recently released as drafts, consisting of 212 and 91 contigs, respectively [15,16]. Unfortunately,
although the draft genomes provided insights into the gene content and functional capacities of P.
nitroreducens, their incompleteness hampered comparative genomics analyses and evaluations of
the potential role of mobile genetic elements in their evolution. The main goal of this study was,
therefore, to produce a complete gapless genome of P. nitroreducens HBP-1 and to study the nature
and functionalities of its potential mobile elements. We used a combination of Illumina short-read
sequencing as well as PacBio long-read sequencing to assemble the HBP-1 genome. Regions of genome
plasticity in HBP-1 were further analyzed for characteristics of genomic islands, putative prophages,
and integrative and conjugative elements (ICEs). Mating assays between P. nitroreducens HBP-1 as
donor and P. putida UWC1 as recipient were conducted to examine self-transfer of deduced ICEs. We
found that P. nitroreducens contains two active ICEs that can transfer at low rates. The ICEs carry
extensive sets of genes involved in aromatic compound metabolism and resistance to heavy metals,
likely determining the ability of strain HBP-1 to cope with numerous toxic compounds. The capacity to
spread adaptive functions via the transfer of ICEs could favor adaptation of further bacterial members
in natural communities to withstand pollutant stress [17].

2. Materials and Methods

2.1. Culture Conditions

P. nitroreducens HBP-1 (formerly P. azelaica HBP-1) [6] and P. putida UWC1 miniTn7::Ptac-mcherry
(UWCGC) (Gmr) [18] were routinely grown in lysogeny broth (LB Miller, Difco) at 30 ◦C and 180 rpm
in an orbital shaker/incubator. The strains were preserved at −80 ◦C in LB containing 15% (vol/vol)
glycerol. As a defined medium, 21C minimal medium [19] was used, which was supplemented
with one of the following carbon sources (final concentrations): sodium succinate (20 mM), 2-HBP
(2.5 mM, dosed 1:100 from a stock in dimethylsulfoxide), salicylate (2.5 mM), benzoate (2.5 mM),
4-hydroxybenzoate (2.5 mM), vanillate (2.5 mM), phthalate (2.5 mM), phenol (2.5 mM), or catechol
(2.5 mM). Whenever necessary for the selection of genetic constructs, gentamicin (10 or 20 µg mL−1),
rifampicin (25 µg mL−1), mercuric chloride (4 µM) or sodium arsenite (5 mM) were amended to
the growth media.

2.2. DNA Isolation, Sequencing and Assembly

The P. nitroreducens HBP-1 genome was sequenced with both long-read (PacBio, Menlo Park,
CA, USA) and short-read (Illumina paired-end) technology. For PacBio sequencing, a single clone
grown from a glycerol stock of P. nitroreducens HBP-1 on a minimal medium–succinate plate, was
inoculated into the same liquid medium and was harvested in mid-exponential growth phase (ca.
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0.5 optical density units at 600 nm). Four aliquots of ca. 109 cells were pelleted by centrifugation at
14,000× g for 5 min, and DNA was extracted in parallel using a PowerSoil DNA extraction kit (MoBio
Laboratories, Carlsbad, CA, USA). The resulting DNA aliquots were pooled together, precipitated with
ethanol-sodium acetate, washed with 75% ethanol, briefly dried and dissolved in 5 mM Tri-HCl pH 8.
DNA quality was analyzed on a 2100 Electrophoresis Bioanalyzer Instrument (Agilent Technologies,
Santa Clara, CA, USA), and quantified with an Invitrogen™ Qubit™ 3 Fluorometer (Thermo Fisher
Scientific Inc, Waltham, MA, USA). Subsequently, 7.4 µg of DNA were fragmented at 4100 rpm for
1 min with a Covaris g-TUBE device (Covaris Ltd., Brighton, UK) and 5 µg was used for preparing
sequencing libraries (SMRTbell template prep kit 1.0, Pacific Biosciences, Menlo Park, CA, USA). DNA
sequencing was performed on a PacBio RSII instrument (Pacific Biosciences, Menlo Park, CA, USA)
at the Lausanne Genomic Technologies Facility using a single v3 SMRT™ Cell, P6-C4 chemistry and
4-h movies time. A total of 52,338 reads with a mean length of 13,833 nt were de novo assembled
and circularized using the Hierarchical Genome Assembly Process (HGAP) version 3.0 [20], yielding
three circular replicon assemblies with 83-fold average coverage. The assembly was validated using
Illumina 50-nt paired-end sequence reads, obtained on a library prepared and sequenced essentially as
described by Miyazaki et al. [4] in a single flow lane using the Illumina Genome Analyzer II sequencing
platform, resulting in 8,000,273 reads. Subsequently QC-trimmed reads were mapped to the HGAP
assembly using Bowtie [21], the output was converted to SAM/BAM format with SAMtools [22] and
the assembly was validated with QualiMap version 2.2.1 [23,24].

In order to quantify and compare mean coverages of the three P. nitroreducens HBP-1 replicons,
we resequenced another two DNA samples prepared from two succinate grown cultures inoculated
either with a single or with five independent P. nitroreducens HBP-1 colonies. DNA was extracted
from 109 cells by bead beating and magnetic bead purification (CleanNGS beads, LABGENE Scientific
SA) following the manufacturer′s protocol. Indexed libraries were constructed by using the Vazyme
TruePrep DNA Library Prep kit V2 for Illumina (Vazyme) starting from 1 ng DNA input. Libraries
were paired-end sequenced on a Illumina HiSeq2500 with HiSeq Rapid SBS Kit V2 in a rapid 2 ×
150 mode.

2.3. Annotation

The finished assembly of P. nitroreducens strain HBP-1 was annotated by the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) [25,26] and deposited to GenBank (see below for accession
numbers). In addition, Rapid Annotation using Subsystems Technology (RAST) [27] and Prokka [28]
annotations were explored for maximum details about gene content. The functional gene content of
the reported mobile genetic elements was inspected manually and, whenever needed, used to improve
the automatic annotations based on analyses by BLAST to GenBank and UniProt Knowledge Base
(UniProtKB) with the emphasis given to expert annotations. KEGG and MetaCyc [29], or specific
literature were used as reference for metabolic pathways.

2.4. In Silico Analyses of Genomic Islands, ICEs and Prophages

IslandViewer [30] and PHASTER [31] were used with default parameters to search for genomic
islands and phages, respectively. The data were visualized using ACT Artemis [32], DNA plotter [33],
and Adobe Illustrator (Adobe Inc, San Jose, CA, USA, vs. 2020).

2.5. Characterization of ICE Attachment Sites

PCR primers were designed to amplify putative attL and attR recombination sites of ICEPni1
and ICEPni2 in P. nitroreducens HBP-1 and amplicons were verified by amplicon sequencing (Table 1).
The primer sets used to amplify the specific attachment sites in P. nitroreducens and P. putida are listed
in Table 2. PCRs were performed using 1 × GoTaq® G2 Green Master Mix (Promega), with 100 pM of
each primer and 20 ng of purified DNA as a template with the following thermal cycler conditions: (i)
3 min at 94 ◦C; (ii) 30 cycles of 30 sec at 94 ◦C, 30 sec at the appropriate annealing temperature, and
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1 min per kb at 72 ◦C; and (iii) 5 min at 72 ◦C. After agarose gel analyses, the intended PCR products
were purified using a NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany),
and Sanger-sequenced at GATC Services (Eurofins Genomics, Luxembourg, Luxembourg). Nucleotide
sequences were aligned and compared using DNASTAR Lasergene v.15 package and BLASTn.

Table 1. Primers used in this study.

Name Sequence (5′-3′) Reference

pPaz2002_fw CACAGGCGCTTTTGCTTGC This work
pPaz2003_rev CAGATGGTTGATGTAGCCGATAG This work

pPazICE1_left_fw GACTCGGGGCGATCCATTGAC This work
pPazICE1_left_rev CGCGACCCGTGCTCAAAC This work

pPazICE1_merA_fw ATCATGGCCGAGGCGATCAC This work
pPazICE1_merA_rev GCCAGGATGCCTTCGTACTTGG This work
pPazICE2_right2_fw GAACCGTGAGGTCTGAGAGCATG This work
pPazICE2_right_rev CCACTTCATCGACGTGGAACACA This work

pPazICE2_LE_DisFw CCTGACGCTGCCATCTGCCT This work
pPazICE2_LE_DisRe GAATGGCTGCAATCAGGAACGAC This work
pICE2_LeftProxOut CCGCCAGCACCCACAGAC This work
pICE2_LeftProxIn CATCTTGGAGTAAGAGCTGCGC This work

pPazICE2_hbpA_fw GGGTGCTGGTCCGGCTGG This work
pPazICE2_hbpA_rev CGGCGTTTTGCGCAACTAGC This work

Pgly1fw GCCCAAGCGTCGTGATGAATG [34]
Pgly1rev ACGTGAGCGGTGTTGATGGTGAT [34]
Pgly2rev TTGAAGCGGATCGGTGGGTAAT [34]
Pgly2fw AATGTCATGCTGGGCTTCCTCAA [34]
Pgly3fw CAGTAATGCCAGCAGCGTGTCC [34]
Pgly3rev GTGCCGGAGAAACTGGAGCG [34]
Pgly4fw ATCGTGAGGTTCATGTTCTGGTGC [34]
Pgly4rev GCACCGCATAGACGCCACAGTA [34]
Pgly5fw TCACGCCGAACGTGGTAAAGC [34]
Pgly5rev GACCTCCGTGGAAGGCTGTAAATCT [34]

Pgly6fw_SV 070933 TCGCTAGAATGGCACCCATCAC [34]
Pgly6rev 060353 CGCCGCGTTGTGGTGTTTG [34]
Pgly6fw 060354 TCCTGCTCATTCCGTGCTTCATT This work

Pgly6rev2 140309 CGACTGAAACCTGTAGATC This work

Table 2. List of primers used to amplify integrative and conjugative element (ICE) recombination sites.

Recombination/Integration Site Primer Pair Amplicon Size (bp)

ICEPni1 in P. nitroreducens

attRICEPni1 pPaz2002_fw/pPaz2003_rev 1138
attLICEPni1 pPazICE1_left_fw/pPazICE1_left_rev 984
attPICEPni1 pPaz2002_fw/pPazICE1_left_rev 982

ICEPni2

attRICEPni2 pPazICE2_right2_fw/pPazICE2_right_rev 933
attLP

ICEPni2 pICE2_LeftProxOut/pICE2_LeftProxIn 834
attLD

ICEPni2 pPazICE2_LE_DisFw/pPazICE2_LE_DisRe 934
attPP

ICEPni2 pPazICE2_right2_fw/pICE2_LeftProxOut 717
attPD

ICEPni2 pPazICE2_right2_fw/pPazICE2_LE_DisFw 934

attB Integration Sites in P. putida UWC1 a, tRNAGly

tRNAGly-1 PP_RS02330 Pgly1fw/Pgly1fw 985
tRNAGly-2 PP_RS07265 Pgly2fw/Pgly2rev 401
tRNAGly-3 PP_RS09655 Pgly3fw/Pgly3rev 185
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Table 2. Cont.

Recombination/Integration Site Primer Pair Amplicon Size (bp)

tRNAGly-4 PP_RS09665 Pgly4fw/Pgly4rev 225
tRNAGly-5 PP_RS09670 Pgly5fw/Pgly5rev 135
tRNAGly-6 PP_RS21295 Pgly6fw/Pgly6rev 803

ICEPni1 Junctions in P. putida

ICEPni1-tRNAGly-3 (attR) Pgly3fw/pPaz2002_fw 553
ICEPni1-tRNAGly-4 (attR) Same as above 800
ICEPni1-tRNAGly-5 (attR) Same as above 962
ICEPni1-tRNAGly-6 (attR) Pgly6fw_SV/pPaz2002_fw 482
ICEPni1-tRNAGly-3 (attL) pPaz2002_rev/Pgly3rev 1039
ICEPni1-tRNAGly-4 (attL) pPaz2002_rev/Pgly3rev 792
ICEPni1-tRNAGly-5 (attL) pPaz2002_rev/Pgly3rev 637
ICEPni1-tRNAGly-6 (attL) pPaz2002_rev/Pgly6rev2 607

ICEPni2 Junctions in P. putida

ICEPni2-tRNAGly-2 (attR) pPazICE2_right2_fw/Pgly2fw 536
ICEPni2-tRNAGly-2 (attL) pICE2_LeftProxOut/Pgly2rev 579

a Locus tag are based on the P. putida KT2440 reference genome accession NC_002947.4.

2.6. ICE Transfer Assays

The ability of the discovered ICEs to self-transfer was examined in conjugation assays between P.
nitroreducens HBP-1 (donor) and P. putida UWC1 miniTn7::Ptac-mcherry (recipient) [18]. For ICEPni1
transfer, the donor was grown in liquid minimal medium with 20 mM succinate supplemented with
either 4 mM sodium arsenite or 8 µM mercury chloride. For ICEPni2, the donor was grown in liquid
minimal medium with 5 mM 2-HBP. The recipient was grown in succinate medium amended with
20 µg mL−1 Gm and 25 µg mL−1 Rif. Both cultures were harvested at OD600 0.5–1.0 by centrifugation
for 5 min at 5000× g, washed once in 1 mL minimal medium, combined at 1:1 donor:recipient ratio,
pelleted by centrifugation as above, resuspended and then deposited on a 0.2–µm cellulose acetate
filter (Sartorius) placed on 1 mM succinate minimal media agar. Plates with filters were incubated
for 48 h at 30 ◦C. The number of donor and recipient cells per mating ranged between 4.1 × 107 and
7.5 × 108 (per filter). After the incubation, the resulting mating mixes were resuspended in 0.5 mL of
minimal medium, serially diluted and plated on selective media as follows. The number of donor
cells (P. nitroreducens HBP-1) was enumerated on minimal medium agar plates supplemented with
2.5 mM 2HBP. Colonies of the UWCGC recipient (P. putida UWC1 miniTn7::Ptac-mcherry) were counted
on minimal media agar amended with 20 mM succinate, 20 µg mL−1 gentamicin and 25 µg mL−1

Rif. P. putida ICEPni1-exconjugants were selected on minimal medium agar plates supplemented
with 20 mM succinate, 20 µg mL−1 gentamicin and 4 µM mercury chloride, whereas, for ICEPni2
exconjugants, the minimal medium was amended with 20 µg mL−1 gentamicin and either 5 mM 2HBP
or 2.5 mM salicylate. The exconjugant colonies were purified by streaking on the respective selective
media and the presence of ICEs was confirmed by PCR as follows. The ICEPni1 marker merA was
amplified with primer pair pPazICE1_merA_fw and pPazICE1_merA_rev, whereas ICEPni2 marker
hbpA was amplified with pPazICE2_hbpA_fw and pPazICE2_hbpA_rev (Table 1). In addition, the P.
putida background of putative exconjugants was confirmed by mCherry fluorescence detected with
a Zeiss Axioplan II microscope equipped with a 100× Plan Achromat oil objective lens (Carl Zeiss,
Oberkochen, Germany), a SOLA SE light engine (Lumencor, Beaverton, OR, USA), and a SPOT Xplorer
1.4 Mp Cooled CCD Camera (SPOT Imaging Solutions, a division of Diagnostic Instruments, Inc.,
Sterling Heights, MI, USA).
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2.7. Database Submission

The complete gapless P. nitroreducens HBP-1 genome is available from Genbank under accession
numbers CP049140, CP049142, CP049141 for the chromosome, and the two plasmids pPniHBP1_1 and
pPniHBP1_2, respectively.

3. Results and Discussion

3.1. Genome of Pseudomonas Nitroreducens HBP-1

A complete genome of P. nitroreducens HBP-1 was sequenced using PacBio long read technology,
assembled with HGAP and annotated by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [25,
26]. The final gapless P. nitroreducens genome is composed of three replicons: a circular chromosome
of 6874,118 bp (CP049140), and two plasmids pPniHBP1_1 (CP049142, 425,042 bp) and pPniHBP1_2
(CP049141, 128,388 bp, Figure 1 and Table S1, sheet GenomeFeatures). Remapping of Illumina
sequence reads on the complete assembled genome showed that the three replicons have roughly
the same coverage, suggesting a single copy of each replicon per cell (Figure S1). Comparison with
a previously published draft genome of HBP-1 [15] notably highlighted the presence of a third replicon
(pPniHBP1_2), whereas only two repicons (a chromosome and a megaplasmid) had been proposed
previously [15]. Further analysis indicated that the sequences of all three replicons (Figure 1) are
found among the 212 contigs of the draft genome but had remained fragmented. Some of the previous
contigs overlap the (arbitrary) starts and ends of the two newly assembled replicons, confirming that
P. nitroreducens plasmids are closed circular DNA molecules (Figure 1A,B). The chromosome of P.
nitroreducens aligned well with those of a number of other Pseudomonas species but presented a variety
of regions of genome plasticity that likely correspond to genomic islands (Figure 1A, green and purple
circles; discussed further below).

Figure 1. Cont.
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Figure 1. Circular maps of replicons of the P. nitroreducens HBP-1 genome. (A). Chromosome with
predictions of the main genomic island (GIPni1), prophages (P) and ICEs (ICEPni1 and ICEPni2).
The outermost circles show the location of predicted ORFs on the top strand (light blue) and bottom
strand (red), followed by IslandViewer and PHASTER predictions showing regions of genome plasticity
(dark blue). The inner circles represent BlastN comparisons with genomes of other Pseudomonas
species (alternating green and purple circles), from the outside to the inside: Pseudomonas sp.
AK6U (Acc. No., NZ_CP025229.1), Pseudomonas knackmussii B13 (NZ_HG322950.1), Pseudomonas
putida KT2440 (NC_002947.4), Pseudomonas aeruginosa PAO1 (NC_002516.2), Pseudomonas citronellolis
SJTE-3 (NZ_CP015878.1), Pseudomonas oryzihabitans USDA-ARS-USMARC-56511 (NZ_CP013987.1),
Pseudomonas pseudoalcaligenes CECT 5344 (NZ_HG916826.1), Pseudomonas resinovorans NBRC 106553
(NC_021499.1), Pseudomonas stutzeri 28a24 (NZ_CP007441.1), and Pseudomonas veronii 1YdBTEX2
(LT599583.1). The two innermost circles depict the GC plot (penultimate circle), and the GC skew
(most central circle). Numbers around the black circle indicate the size in base pairs. (B). Plasmid
pPniHBP1_1 with the indication of heavy metal resistance loci (HMR), active partition system (parAB
or PRTRC), initiation replication protein (rep), relaxase (rel), helicase (hel). Organization is the same
as that described for the map of the chromosome except for the BlastN comparisons, which were
performed with (from the outside to the inside) Pseudomonas putida KT2440 (NC_002947.4), Pseudomonas
aeruginosa genomic island PAGI-5 (EF611301.1), Pseudomonas aeruginosa strain PA298 plasmid pBM908
(CP040126.1), and Pseudomonas aeruginosa strain T2101 plasmid pBT2101 (CP039991.1). (C). Plasmid
pPniHBP1_2 with the same indications as for pPniHBP1_1, and other features of interest (umuCD,
ndpA). Organization is the same as that described for the map of the chromosome except for the BlastN
comparisons, which were performed with (from the outside to the inside). Pseudomonas sp. SCB32
chromosome (CP045118.1), Pseudomonas aeruginosa strain AR_0356 plasmid (pAR0356, CP027167.1).

3.2. Genomic Insight into Plasmids of P. nitroreducens

P. nitroreducens HBP-1 carries two plasmids that were named pPniHBP1_1 and pPniHBP1_2
(Figure 1B,C). pPniHBP1_1 is circa 425 kb and codes for a putative RepB replication initiation
protein G5B91_33395 [35]. At least two putative partition systems are encoded: a parA/parB locus
(G5B91_33565/G5B91_33570), a gene coding for a PRTRC system ParB protein (G5B91_33435) and two
orphan ParB-encoding genes (G5B91_35220 and G5B91_33555, Figure 1B and Table S1 pPniHBP1_1).
pPniHBP1_1 also codes for a putative relaxase VirD2 (Figure 1B), but no other conjugative transfer
components, suggesting that it could be a mobilizable plasmid relying on the T4SS of another
autonomous conjugative element for its transfer [36]. pPniHBP1_1 carries three loci coding for
resistance to heavy metals: copper, tellurite, mercury and arsenate/arsenite (Figure 1 and Table S1,
sheet pPniHBP1_1).

Plasmid pPniHBP1_2 is 128,388 bp in length and encodes a RepB-type replication initiation
protein, a ParA family protein, a ParB/RepB/Spo0J family partition protein and a replication terminus
site-binding protein. All share about 50–65% aa identity with homologs from other Pseudomonas
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plasmids. Other plasmid-related functions include six ParB-homologs, a ThiF-Related Cassette
(PRTRC), an abortive phage infection protein, a type-I restriction-modification system DNA methylase
and a type IV toxin-antitoxin gene pair (AbiEi/AbiEii) (Table S1, sheet pPniHBP1_2). In addition,
pPniHBP1_2 carries a 12-gene cluster that is well conserved among other Pseudomonas plasmids
(notably, the P. resinovorans plasmid pCAR1). It seems unlikely that pPniHBP1_2 encodes its own
conjugal transfer system since no hallmark type IV secretion system (T4SS) structural genes were
identified. We did find genes for the putative conjugal transfer mating pair stabilization proteins TraN,
the PilB T4P pilus assembly pathway ATPase-like protein, a helicase and an endonuclease (Table S1
pPniHBP1_2). This might indicate that pPniHBP1_2 is not self-transferable, but would depend on
other mobile genetic elements for transfer [36]. The functional gene cargo on pPniHBP1_2 is predicted
to code for proteins involved in sensing and defense by the efflux of heavy metal cations such as
Co2+, Zn2+, Cd2+, Cu2+, Ag1+, Hg2+, Pb2+ (Table S1, sheet pPniHBP1_2) [37–39]. The plasmid is
also predicted to code for the metabolism of diverse (amino)aromatic compounds (Table S1, sheet
pPniHBP1_2).

3.3. Genomic Islands in the Genome of P. nitroreducens

The analysis of regions of genome plasticity in the P. nitroreducens chromosome by Island
Viewer [30] and PHASTER [31] indicated several potential genomic islands (GIs) and prophages
(Figure 1A). Moreover, the two plasmids might contain GIs (Figure 1B,C). The P. nitroreducens genome
likely contains eight intact prophages (P1, P2, P6, P7, P8, P9, P10, P11), whereas a further seven regions
(P3, P4, P5, P12, P13, P14, and P15) may encode satellite prophages, phage remnants or tailocins [40,41]
(Figure 1A and Table 3). None of the phage-related GIs appeared to code for obvious adaptive functions.

Table 3. PHASTER predictions of prophage locations in P. nitroreducens HBP-1.

Replicon Phage Start-Stop (bp) Size (kb) Prediction a Related Phage-Accession
Number

Chromosome P1 211,373–255,489 44.1 intact Stenotrophomas phage
S1-NC_011589(5)

P2 654,715–672,064 17.3 intact Enterobacter phage
Arya-NC_031048(6)

P3 1,611,889–1,643,994 32.1 incomplete Pseudomonas phage
FHA0480-NC_041851(8)

P4 2,297,162–2,315,460 18.3 incomplete Pseudomonas phage
YMC11/02/R656-NC_028657(7)

P5 2,319,087–2,355,574 36.5 questionable Pseudomonas phage
PAJU2-NC_011373(14)

P6 2,525,149–2,570,649 45.5 intact Pseudomonas phage
MD8-NC_031091(5)

P7 2,562,995–2,608,469 45.5 intact Pseudomonas phage
phiCTX-NC_003278(29)

P8 2,935,034–2,974,747 39.7 intact Pseudomonas phage
JBD25-NC_027992(34)

P9 3,666,393–3,701,365 35.0 intact Salmonella phage
SEN34-NC_028699(20)

P10 3,714,527–3,770,149 55.6 intact Salmonella phage
SEN34-NC_028699(19)

P11 5,332,674–5,379,949 47.3 intact Pseudomonas phage
YMC11/02/R656-NC_028657(9)

pPniHBP1_1 P12 144,536–158,207 13.7 incomplete Acinetobacter phage
vB_AbaM_ME3-NC_041884(3)

P13 323,653–329,028 5.4 incomplete Pseudomonas phage
MD8-NC_031091(2)

P14 385,628–394,444 8.8 incomplete Halovirus HCTV5-NC_021327(2)

pPniHBP1_2 P15 51,522–65,829 14.3 incomplete Ralstonia phage
p12J-NC_005131(2)

a Incomplete, questionable and intact refer to PHASTER total score [31].



Genes 2020, 11, 930 9 of 18

Two GIs (Figure 1A) contained homologs to the hallmark gene VirB4 from the T4SS and, therefore,
encompassed potentially transferable elements [42]. The product of both VirB4 homologs had a high
similarity to the VirB4 protein of the prototypical element ICEclc of P. knackmussii B13, suggesting
they belong to a mating-pair formation type MPFG that is characteristic for ICE T4SS [42]. BlastP
comparison with VirB4ICEclc revealed 95% of amino acid (aa) identity over 98% of the protein sequence
for VirB4ICEPni1, and 79% of aa identity over 99% for VirB4ICEPni2. The GIs that encompassed the virB4
homolog genes were thus renamed as putative ICEs ICEPni1 and ICEPni2 (integrative conjugative
element of P. nitroreducens 1 and 2) for reasons outlined further below. Although ICEPni2 had been
detected before and named ICEbhp [15], it was renamed here to comply with the suggestions put
forward by Burrus and collaborators [43].

The third GI encompassed a 123-kb region between tRNAGln and tRNAMet (G5B91_27170 and
27745) on the P. nitroreducens HBP-1 genome (Figure 1A, designated as genomic island P. nitroreducens 1,
GIPni1). GIPni1 did not contain any genes coding for horizontal transfer, thus preventing a more specific
classification (Figure 1A and Table S1, sheet GIPni1). Sequence analysis revealed that GIPni1 bears two
hallmark proteins shared by prophages and ICEs: a tyrosine type recombinase/integrase (G5B91_27195)
and an AlpA-related transcriptional regulator/excisionase (G5B91_27730). Further resemblance to
prophages was limited to three proteins: an inovirus Gp2 family protein, and two DUF3732 and
DUF932 domain-containing proteins (Table S1, sheet GIPni1). There was little conservation in gene
content between GIPni1 and other putative GIs occupying the same genome plasticity region in other
Pseudomonas genomes, except for about a dozen genes surrounding the integrase gene and few other
hypotheticals scattered throughout the GI (Table S1, sheet GIPni1). The large majority of the functions
encoded on GIPni1 are enzymes associated with lipid metabolism. This concerns mainly fatty acid
beta-oxidation pathway enzymes, many of which are represented by multiple alleles, for example,
(long- and medium-chain) fatty acid-CoA ligases (4 alleles), acyl-CoA dehydrogenases (12), enoyl-CoA
hydratases (8), thiolases (2), oxidoreductases (14), (acyl) CoA-transferases (3 alleles, Table S1, sheet
GIPni1). Their corresponding genes are organized in operon-like structures and are associated with
transcriptional regulators, transporters and electron-transfer components, likely forming complete
and functional metabolic systems. In addition, the GIPni1 encodes a dozen different hydrolases and
amidohydrolases, a glycerol-dehydrogenase and a glycolate oxidase, further extending its metabolic
and adaptive potential for the host. Like in the case of the ICEPni2 (described further below), we
hypothesize that the lipid- and fatty-acid-rich environment of the wastewater treatment plant has been
selective to fix the acquired lipid metabolism-encoding GIPni1 in the genome of P. nitroreducens HBP1.

3.4. Defining the Borders of ICEPni1 and ICEPni2

Both putative ICE regions in the P. nitroreducens HBP-1 genome contained an integrase gene.
The ICEPni1 integrase gene (G5B91_21265) shared 91% aa identity over 94% of the protein sequence
with that of the ICEclc and was oriented adjacent to and in the same orientation as a tRNA operon
encompassing three GCC tRNAGly and one TTC tRNAGlu gene (G5B91_21285-G5B91_21270). This
strongly resembled the ICEclc “right end” structure (Figure 2) [34]. A repeat of the 18-bp 3′-end
sequence of the tRNAGly (5′-G(A/T)CTCGTTTCCCGCTCCA-3′) was found about 95 kb upstream,
suggesting that these repeats form attR and attL recombination sites (Figure 1, Figure 2A, and Table 4).
The size of ICEPni1 in between the two 18-bp repeats was 95,926 bp (chromosome coordinates
4,376,070–4,471,995). The ICEPni1 attachment sites were almost identical to those of ICEclc, suggesting
that they share a similar integration specificity [34].

The ICEPni2 integrase (G5B91_07495) showed 57% aa identity to IntB13 over 93% of the predicted
protein sequence. The gene was located on the minus strand and was preceded by a CCC tRNAGly gene
(G5B91_07500). Two sequences identical to the tRNAGly 18-bp 3′-end (5′-TTCCCTTCGCCCGCTCCA-3′)
were found about 170 kb upstream, in two direct copies separated by ca. 6 kb from each other. We
designated these as candidate proximal and distal attL recombination sites (attLP

ICEPni2 and attLD
ICEPni2

respectively) (Figure 2A and Table 4). As we show below, we only detected excision from the proximal
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recombination site attLP
ICEPni2 and identified its recombination from post-transfer integration in

the new host. This indicated, therefore, that ICEPni2 would encompass the region 1410,790–1582,233 of
the P. nitroreducens HBP-1 chromosome, and its size, including both repeats, would amount to 171,444
bp (Figure 2A).

Figure 2. Comparison of ICEPni1 and ICEPni2 from P. nitroreducens, and ICEclc from P. knackmussi B13
(A). Linear map of ICEPni1, ICEPni2, and ICEclc with indication of the location of predicted ORFs
on the top strand (light blue boxes) and bottom strand (red boxes), the integrase-encoding gene (int),
the attachment sites (att, black boxes), and variable regions (VR). The core region of ICEclc was framed
with dashed black rectangles. The integrase gene of ICEclc on the rightmost end of the element was used
as a reference point for the alignments. Comparisons were performed using BlastN and are displayed by
colored areas linking related regions in the same (red) and inverted (purple) orientation. The intensity
of the colored area reflects the percentage of nucleotide identity (minimum 65%) between the sequences.
(B). Schematic representation (drawn to scale) of the genetic organization of ICEclc, ICEPni1 and ICEPni2
regulation loci. Genes are represented by arrowed boxes, and color-coded according to bioinformatic
prediction or experimental demonstration of their function: purple, integration/excision; orange, active
partition; light to dark blue, transcriptional activators; black, toxic effect; pink, single-stranded DNA
protection; light yellow, tRNA; gray, unknown function. Promoters are represented by angled arrows
pointing towards the transcription orientation. Numbers under genes (x/y) indicate the percentage of
amino acid identity (x) and the coverage (y) of corresponding gene product in ICEclc.

Table 4. Sequenced attachment sites of ICEPni1 and ICEPni2 in P. nitroreducens HBP-1 and in P.
putida UWCGC.

Attachment Site Sequence (5′ to 3′) Host

ICEPni1

attL GACTCGTTTCCCGCTCCA P. nitroreducens
attR GTCTCGTTTCCCGCTCCA P. nitroreducens
attP GACTCGTTTCCCGCTCCA P. nitroreducens
attB GTCTCGTTTCCCGCTCCA P. nitroreducens
attB GTCTCGTTTCCCGCTCCA P. putida
attL GACTCGTTTCCCGCTCCA P. putida
attR GTCTCGTTTCCCGCTCCA P. putida
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Table 4. Cont.

Attachment Site Sequence (5′ to 3′) Host

ICEPni2
attL TTCCCTTCGCCCGCTCCA P. nitroreducens
attR TTCCCTTCGCCCGCTCCA P. nitroreducens
attP TTCCCTTCGCCCGCTCCA P. nitroreducens
attB TTCCCTTCGCCCGCTCCA P. nitroreducens
attB TTCCCTCTACCCGCTCCA P. putida
attL1 TTCCCTCTACCCGCTCCA P. putida
attL2 TTCCCTTCGCCCGCTCCA P. putida
attR1 TTCCCTCTACCCGCTCCA P. putida
attR2 TTCCCTTCGCCCGCTCCA P. putida

3.5. ICEPni1 and ICEPni2 Are Related to ICEclc

Both ICEPni1 and ICEPni2 showed a region with extensive similarity to the core gene region
of ICEclc, which codes for functions essential to the ICE lifestyle such as integration, excision,
DNA processing, mating pore formation, and regulation (Figure 2A, dashed black rectangles) [44].
The analogous core region of ICEPni2 appears to be ‘inverted’ relative to the location of the integrase
gene on ICEclc and ICEPni1 (Figure 2A). Homologs of the main regulatory genes for ICEclc activation
were present on ICEPni1 and ICEPni2 (Figure 2B) [45]. This notably included a BisR activator homolog
on ICEPni1 with 70% aa identity over 99% of the sequence related to BisR of ICEclc, and further,
homologs of alpA, parA, shi, bisD and bisC. The strong gene synteny between regulatory loci suggests
that ICEPni1 may be activated in a similar manner as ICEclc, which would thus entail a bistable
formation of transfer competence in a specific small subpopulation of cells [45–47]. Gene homologs on
ICEPni2 were more distantly related to the ICEclc regulatory module with around 70% nucleotide and
59–76% amino acid sequence identity, but still conserved synteny of alpA throughout bisC. In contrast,
ICEPni2 did not appear to encode a BisR regulator homolog upstream of alpA, suggesting that its
activation may proceed differently than for ICEPni1 and ICEclc (Figure 2B).

Comparison of the ICEs of P. nitroreducens with ICEclc further showed how conserved stretches are
interspersed with unique variable regions (VRs), highlighting the modular pattern of their evolution
(e.g., VR-regions indicated in Figure 2A). Some of the variable regions may have been maintained
because they conferred selective advantages to P. nitroreducens, as will be discussed further below.

3.6. ICEPni1 Encodes Mercury, Arsenic and Formaldehyde Detoxification and a Bacteriophage Defense System

Manually curated annotations (Table S1, sheet ICEPni1) suggested that ICEPni1 carries three sets
of genes for defense against toxic compounds. The first set (on VR1, G5B91_20860 to G5B91_20875)
encodes the archetypal mercury resistance determinants. This includes mercury(II) uptake and
reduction by a complex of mercuric transport protein MerT, mercuric transport protein periplasmic
component MerP, mercuric reductase MerA under control of Hg(II)-responsive transcriptional regulator
MerR. The second set (i.e., VR2, G5B91_20945 to G5B91_20965) codes for arsenate/arsenite resistance,
with a classical transcriptional repressor ArsR, which controls an operon of arsenate reductase ArsC
and arsenite efflux transporter ArsB. These, together, facilitate reduction of As(V) to As(III) and its
efflux, followed by a trivalent organoarsenical oxidase ArsH, which oxidizes methyl-arsenite As(III)
and other highly toxic trivalent organoarsenicals (e.g., herbicides MSMA, DSMA or CAMA) to less toxic
pentavalent species [48,49]. The group of genes within VR4 (Figure 2A) likely codes for formaldehyde
oxidation via glutathione-dependent and –independent pathways, and is represented by homologues
of S-(hydroxymethyl) glutathione dehydrogenase FrmA (G5B91_21165) and S-formylglutathione
hydrolase FrmB (G5B91_21180) on one hand, and formaldehyde dehydrogenase FdhA (G5B91_21240)
on the other. VR4 also carried a mosaic of genes and remnants thereof belonging to different
functional categories, e.g., carbon metabolism (notably, dye decolorizing peroxidase, nitrilase/amidase
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and oxidoreductase), DNA recombination and repair (replication-associated recombination protein
A, excinuclease components UvrA and UvrB, two transposases), and a variety of transcriptional
regulators (Table S1, sheet ICEPni1). In accordance with these predictions, P. nitroreducens was able
to grow in the presence of up to 8 µM of mercury chloride and 10 mM sodium arsenite, and it
transferred the mercury resistance trait via conjugation (see below). Finally, another feature of adaptive
significance is encoded on VR3; an operon spanning loci G5B91_21005 to 21040 (Table S1, sheet ICEPni1),
which encodes proteins resembling the recently described cyclic oligonucleotide-based anti-phage
signaling system (CBASS) [50]. Taken together, the ICEPni1 cargo is densely packed with functions of
detoxification and defense, which may have been advantageous for the survival of P. nitroreducens in
the polluted (wastewater) environment from whence it was isolated.

3.7. ICEPni2 Encodes Metabolism of Aromatic Compounds and Fatty Acids

ICEPni2 contains genes for two complete central pathways for aromatic compound
metabolism: a catechol meta-cleavage pathway (G5B91_07410 to G5B91_07475, 14 genes) and
a protocatechuate ortho-cleavage pathway (G5B91_06945 to G5B91_07000, 12 genes) (Table S1,
sheet ICEPni2). In addition, genes for so-called peripheral pathways encode the enzymes to
channel mono- and di-aromatic substrates into the central pathways. Among these, the previously
characterized hbpRCAD genes (G5B91_07355 to G5B91_07370) are responsible for transforming
2-hydroxy- or 2,2’-dihydroxy-biphenyl to 2-hydroxy-2,4-pentadienoic acid and either benzoate, or
salicylate, respectively [6,14]. 2-hydroxy-2,4-pentadienoic acid enters the meta-pathway directly,
whereas benzoate is first converted to catechol by action of a benzoate 1,2-dioxygenase and
1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase encoded by the host genome loci
G5B91_12935-G5B91_12945 (not on ICEPni1). Salicylate may be decarboxylated to catechol by
the ICEPni2-encoded salicylate hydroxylase (G5B91_07395). Further peripheral pathways encoded on
ICEPni2 consist of a ferulate-CoA synthase FerA G5B91_06740, vanillin synthase/trans-feruloyl-CoA
hydratase FerB G5B91_06745, vanillin dehydrogenase G5B91_06735, vanillate O-demethylase VanAB
G5B91_06885-G5B91_06890 and 4-hydroxybenzoate 3-monooxygenase PobA G5B91_06935. These may
catalyze the channeling of ferulate, vanillin, vanillate and 4-hydroxybenzoate into the protocatechuate
pathway (Table S1, sheet ICEPni2). Finally, genes for a two-component aromatic hydroxylase
G5B91_06770 and G5B91_06795, an FMN-dependent NADH-azoreductase (G5B91_06765), and for
carbazole 1,9a-dioxygenase components G5B91_07470 and G5B91_07475, may imply the potential of P.
nitroreducens to metabolize other undefined aromatic substrates. Interestingly, the genes for a major
MexAB-OprM efflux system that is crucial to grow on 2HBP are not present on ICEPni2, but elsewhere
on the chromosome (G5B91_02490–02510) [51].

A second large group of ICEPni2 catabolic functions is represented by around 30 genes
organized in several transcriptional units (Figure 2A, VR5), which may encode transport and
metabolism of fatty acids. Notably, all genes are present for the enzymes (some redundant) required
for fatty acid beta-oxidation: the long-chain-fatty-acid-CoA ligase FadD (two ORFs), acyl-CoA
dehydrogenase FadE (four ORFs), enoyl-CoA hydratase/isomerases FadB (two ORFs) and acetyl-CoA
C-acyltransferases/thiolases FadA (two ORFs). Furthermore, ICEPni2 also encodes a 3-oxoacyl-ACP
reductase FabG and enoyl-[acyl-carrier-protein] reductase FabI, which are involved in fatty acid
synthesis and acyl-carrier-protein metabolism (Table S1, sheet ICEPni2). These genes were intermingled
with ORFs encoding NAD- and FAD-dependent oxidoreductases, electron transfer proteins, hydrolases,
transporters, transcriptional regulators, chemotactic and DUF-proteins (Table S1, sheet ICEPni2), which
often co-occur with genes for fatty acid metabolism in other reference genomes, and on GIPni1 (data
not shown). The presence of these functions on ICEPni2 may have provided a selective advantage in
the fatty acid-rich sewage environment (as we discussed above for GIPni1) and, possibly, also to connect
the acetyl-CoA-producing aromatic catabolic pathways to the central cell metabolism. Finally, close
to the left end proximity of ICEPni2, we identified homologues of the imuA-imuB-imuC (dnaE2) gene
cassette (G5B91_06695-G5B91_06705), which may encode an error-prone translesion DNA synthesis
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polymerase complex [52]. ImuABC polymerases are regulated by the SOS-response and facilitate
replication bypass of damaged DNA, concomitantly enhancing spontaneous mutagenesis [53–55].
These are properties that might be advantageous for both resilience and for accelerated adaptive
evolution to the strongly selective environments in which P. nitroreducens has prevailed. The variable
gene content of ICEPni2 seemed “patchy”, i.e., indicative of their recent acquisition via multiple
recombination events and from different donor genomes. The number of recombination-promoting
sequences on ICEPni2 is limited to only one intact (istAB) and two mutated transposase genes (Table S1,
sheet ICEPni2), suggesting that other recombination mechanisms may have prevailed in the acquisition
of the variable gene content.

3.8. ICEPni1 Can Excise and Transfer to P. putida, and Integrates into One of Four tRNAGly Gene Targets

In order to test whether the identified ICEs were functional, we first examined their possible
excision from the chromosome as a circular element carrying an attP attachment site [56]. A weak
but reproducible signal for an amplified DNA fragment covering both extremities of ICEPni1 and
containing its predicted attPICEPni1 site was obtained by PCR on DNA extracted from P. nitroreducens
grown in MM with 20 mM succinate with or without 5 mM sodium arsenite or 4 µM mercury chloride
or in MM with 5 mM 2HBP. The PCR amplicon was visible in DNA from three independent cultures
that were sampled in exponential, early and late stationary growth phase (data not shown). This
showed that ICEPni1 excision did occur, albeit at a low frequency. Subsequent amplicon sequencing
confirmed that the attP site was formed by recombination at the inferred 18-bp repeats (Tables 2 and 4).

To test the potential of ICEPni1 to transfer, we filter-mated P. nitroreducens with P. putida UWCGC
as a recipient while selecting for mercury resistance (at 4 µM). P. putida UWCGC transconjugants
resistant to mercury appeared at a frequency of 1.16 (±0.37) × 10−6 per donor CFU. The transconjugants
were further Gm resistant and mCherry fluorescent, indicating they were genuine UWCGC derivatives.
Among fifty colonies tested with PCR, nine (18%) amplified a fragment of the merA gene specific for
ICEPni1 (primers pPazICE1_merA_fw/pPazICE1_merA_rev, Table 1), which confirmed transfer of
ICEPni1 (with merA). The large proportion of mercury-resistant colonies without amplifiable merA of
ICEPni1 suggested transfer of (an)other DNA element(s) from P. nitroreducens HBP-1 conferring mercury
resistance. Our attempt to specifically amplify the merA allele carried by plasmid pPniHBP1_1 yielded
no product, thus ruling out the transfer of this plasmid. Possibly, the second plasmid pPniHBP1_2
(Figure 1C) was transferred, which carries genes for ZntA-like P-type ATPase and a CzcCBA-like
tripartite cation efflux system that might confer mercury resistance, but this was not tested.

In seven P. putida UWCGC transconjugants carrying merA of ICEPni1, we further analyzed
the potential integration events. ICEPni1 had integrated into any of the four GCC tRNAGly genes on
P. putida (Table 4, locus tags PP_t21, _t23, _t24, and _t59), exactly as was previously demonstrated
for its sibling ICEclc [34]. Sequencing of the recombination site boundaries showed that attL retained
the 18 bp sequence of the ICEPni1 attP-site (GACTCGTTTCCCGCTCCA, Table 4). This sequence
has one mismatch with respect to attB in P. putida (GTCTCGTTTCCCGCTCCA), and to attR of
ICEPni1 in P. nitroreducens HBP-1 (Table 4). All four sequenced attL sites of transconjugants contained
this same nucleotide difference. This indicates that both excision and integration catalyzed by
the ICEPni1 integrase can tolerate (some) mismatches in the recombination sites, thus likely allowing
ICE establishment in broader range of hosts.

3.9. ICEPni2 Is also a Functional ICE

Excision of ICEPni2 was confirmed by PCR amplification of the attP junction in DNA extracted
from cultures of P. nitroreducens. Interestingly, we could amplify a DNA fragment predicted to
contain the junction between the proximal 18-bp repeat and attL (see above), but not the distal repeat.
The junction was confirmed by sequencing (Tables 2 and 4). Clear PCR amplification was detected on
a gel only in two out of nineteen DNA samples, suggesting a generally low incidence of excision (data
not shown).
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Selection of P. putida UWCGC transconjugants from matings with P. nitroreducens HBP-1 on
minimal medium agar with 5 mM 2-HBP and Gm yielded no colonies, possibly because of the toxicity
of 2-HBP [51]. In contrast, selection on 2.5 mM salicylate and Gm yielded eight colonies among 8.6× 108

donor cells, which would be equivalent to a transfer rate of 10−8 per donor CFU. From the DNA of all
eight colonies, we could amplify a fragment of the hbpA gene, which is specific to ICEPni2. All colonies
were also mCherry fluorescent, confirming that they are P. putida recipients. This also confirmed that
ICEPni2 is transferable from P. nitroreducens. All recovered transconjugants had integrated ICEPni2
at the 3′-end of the CCC tRNAGly gene (locus_tag = PP_t64), suggesting a high specificity for this
integration site. Interestingly, the presumed 18-bp attP site of ICEPni2 and the targeted attB site in
P. putida had three mismatches, which resulted in different combinations of attL/attR sites flanking
the integrated element in P. putida (Table 4). Recombination involving two non-identical sequences is
known to result in the formation of a heteroduplex that is resolved in a variety of combinations of att
sites in the integrated form of ICEPni2, which is not uncommon for tyrosine-type recombinases [57].
The low transfer rate may thus stem from a lower incidence of excision, absence of an efficient efflux
detoxification system to allow productive growth on 2-HBP and salicylate [51], and from mismatch
between the ICEPni2 attP site and the P. putida attB site that limits efficient recombination.

To verify the functionality of ICEPni2-encoded aromatic catabolism genes, we tested the ability of
P. nitroreducens HBP-1 (ICE donor), P. putida UWCGC (recipient) and two P. putida UWCGC (ICEPni2)
transconjugants to grow aerobically in minimal medium supplemented with 2.5 mM 2-HBP, salicylate,
4-hydroxybenzoate and vanillate as the sole carbon source. As expected, P. nitroreducens HBP-1
and P. putida UWCGC ICEPni2-transconjugants, but not P. putida UWCGC, were able to grow on
2-HBP and salicylate. This supported our hypothesis that ICEPni2 indeed contains all necessary
genetic information for these two metabolic pathways. The above-mentioned inability to select for
ICEPni2 transconjugants using 2-HBP most likely reflected the need for the P. putida recipient cells
to integrate ICEPni2 catabolism into its own metabolic network before being able to grow on 2-HBP.
In contrast to P. nitroreducens HBP-1, P. putida UWCGC ICEPni2-transconjugants did not grow on
4-hydroxybenzoate. This would indicate that the ICEPni2 transferred protocatechuate pathway may
not have been functionally expressed in P. putida.

4. Concluding Remarks

The gapless sequence of the P. nitroreducens HBP-1 genome gives a clear view of the numerous
gene acquisitions and adaptations that may have provided HBP-1 with selective advantages to cope
with the polluted environment from whence it was isolated.

The exploration of HBP-1′s genomic plasticity indicated a variety of genetic elements that were
most likely acquired by horizontal gene transfer, some of which (both ICEs) were capable of conjugative
transfer from HBP-1 as donor. In contrast to previous reports [15], HBP-1 carries not only a single large
plasmid but a second plasmid with a variety of potential adaptive functions (Figure 1B,C and Table S1).
It will be interesting to learn more about the capability and mode of dissemination of these plasmids,
and the importance of their adaptive gene functions to the host.

The P. nitroreducens HBP-1 genome is scattered with putative prophages, genomic islands and
ICEs, most of which with unknown properties, origins and functionalities. A 126 kb long genomic
island (GIPni1) was identified with unclear motility properties, as well as several putative prophages,
or derivative elements whose mobility is compromised or dependent on helper element(s) (Figure 1
and Table 3) [36,58]. The two discovered ICEs, ICEPni1 and ICEPni2, code for many obvious adaptive
functions, and confer P. nitroreducens with the capability to resist to heavy metals and to metabolize
aromatic compounds, respectively (Figure 2A). Interestingly, both elements are related in their core
structure to the prototypical element ICEclc (Figure 2), indicating the importance and wide distribution
of this type of element among Gammaproteobacteria. In contrast to ICEclc, ICEPni1 and ICEPni2
transfer at much lower frequencies (10−6–10−8 per donor, compared to 10−2 for ICEclc), but we
demonstrated their excision, transfer and integration in the chromosome of P. putida. They are therefore
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fully functional ICEs. Given the bistable development of transfer competence imposed by ICEclc on its
host, it will be interesting to see if ICEPni1 and ICEPni2 act similarly. Such a mechanism is pivotal for
the lifecycle of ICEclc [46,47,59], and differences and/or similarities in the regulation of ICEPni1 and
ICEPni2 would strengthen our understanding of bistable behavior [45].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/8/930/s1,
Table S1: P. nitroreducens HBP-1 genome annotation, Figure S1: Read coverage plot of the P. nitroreducens HBP-1
genome. Graphical representation of the moving-average coverage per 100-bp window obtained from Illumina
sequencing of P. nitroreducens HBP-1 replicons: chromosome (in blue), pPniHBP1_1 (in green) and pPniHBP1_2
(in red) using 1 colony (A. PNI1) or 5 colonies (B. PNI5) to inoculate an overnight culture. The mean and standard
deviation of coverage are indicated for each replicon.
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