353 research outputs found

    Deep-ultraviolet-microelectromechanicaI systems stencils for high-throughput resistless. patterning of mesoscopic structures

    Get PDF
    We describe a combination of 100-mm wafer scale deep-ultraviolet (DUV) exposure and a microelectromechanical systems (MEMS) process to fabricate silicon nitride membranes with submicrometer apertures to be used as miniature shadow masks or nanostencils. Apertures down to a lateral resolution of 200 nm were made in a 500-nm-thick membrane by DUV exposure and dry plasma etching. The membranes were released by a combination of wet silicon etching using potassium hydroxide (KOH) and dry silicon etching using a plasma process. The millimeter-size stencils were used for single-step, local deposition of metal micro- and nano-patterns without the need for photoresist process steps. We have performed stencil deposition on full wafer scale for micro- and nano-patterns in a variety of metals (e.g. Al, Au, Ni, etc.). Dry under-etching of the nanowires resulted in free-standing cantilevered nanoelectromechanical systems (NEMS) structures with resonance frequencies in the megahertz range. The resistless method allows us to pattern micrometer and nanometer scale patterns in a single step without any further processing. It is promising for the surface processing of MEMS/NEMS devices having sensitive or fragile surfaces, such as biochips, organic polymer layers, and self-assembled monolayers. (C) 2004 American Vacuum Society

    Expression of Keratinocyte Growth Factor in Periapical Lesions

    Full text link
    The epithelial proliferation associated with inflammatory periapical lesions and with periapical cyst formation represents an interesting but poorly understood pathological change. Keratinocyte growth factor (KGF) is a recently identified growth factor that is produced by stromal fibroblasts and acts specifically to stimulate epithelial growth and differentiation. To investigate its possible role in the activation of the normally quiescent rests of Malassez, we examined the expression of KGF by in situ hybridization of sections of normal periodontal ligament (PDL) and of 12 periapical granulomas or cysts. Normal PDL and periapical granulomas with scant inflammatory infiltration showed few cells expressing message for KGF. However, KGFexpressing cells were found in the connective tissue stroma close to dense foci of inflammatory cells and to proliferating epithelial elements and cystic epithelial linings. Examination of tissues by the reverse-transcription polymerase chain reaction (RT-PCR) showed KGF expression in 4 specimens of periapical lesions but low or undetectable levels in normal PDL. These observations suggest that the induction of KGF expression in the stromal cells of periapical lesions may play an important role in stimulating the epithelial proliferation associated with cyst formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66683/2/10.1177_00220345960750090701.pd

    Risk stratification and subclinical phenotyping of dilated and/or arrhythmogenic cardiomyopathy mutation-positive relatives: CVON eDETECT consortium

    Get PDF
    In relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy, early detection of disease onset is essential to prevent sudden cardiac death and facilitate early treatment of heart failure. However, the optimal screening interval and combination of diagnostic techniques are unknown. The clinical course of disease in index patients and their relatives is variable due to incomplete and age-dependent penetrance. Several biomarkers, electrocardiographic and imaging (echocardiographic deformation imaging and cardiac magnetic resonance imaging) techniques are promising non-invasive methods for detection of subclinical cardiomyopathy. However, these techniques need optimisation and integration into clinical practice. Furthermore, determining the optimal interval and intensity of cascade screening may require aΒ personalised approach. To address this, the CVON-eDETECT (early detection of disease in cardiomyopathy mutation carriers) consortium aims to integrate electronic health record data from long-term follow-up, diagnostic data sets, tissue and plasma samples in aΒ multidisciplinary biobank environment to provide personalised risk stratification for heart failure and sudden cardiac death. Adequate risk stratification may lead to personalised screening, treatment and optimal timing of implantable cardioverter defibrillator implantation. In this article, we describe non-invasive diagnostic techniques used for detection of subclinical disease in relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy

    A runaway collision in a young star cluster as the origin of the brightest supernova

    Full text link
    Supernova 2006gy in the galaxy NGC 1260 is the most luminous one recorded \cite{2006CBET..644....1Q, 2006CBET..647....1H, 2006CBET..648....1P, 2006CBET..695....1F}. Its progenitor might have been a very massive (>100>100 \msun) star \cite{2006astro.ph.12617S}, but that is incompatible with hydrogen in the spectrum of the supernova, because stars >40>40 \msun are believed to have shed their hydrogen envelopes several hundred thousand years before the explosion \cite{2005A&A...429..581M}. Alternatively, the progenitor might have arisen from the merger of two massive stars \cite{2007ApJ...659L..13O}. Here we show that the collision frequency of massive stars in a dense and young cluster (of the kind to be expected near the center of a galaxy) is sufficient to provide a reasonable chance that SN 2006gy resulted from such a bombardment. If this is the correct explanation, then we predict that when the supernova fades (in a year or so) a dense cluster of massive stars becomes visible at the site of the explosion

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (∣N/2,m>±∣N/2,βˆ’m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where ∣N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state ∣N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (β€˜random’), connection length preserving (β€˜spatial’), and connection length optimised (β€˜reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain

    Global and Regional Differences in Brain Anatomy of Young Children Born Small for Gestational Age

    Get PDF
    In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain

    Interventions to prevent disability in frail community-dwelling elderly: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an interest for intervention studies aiming at the prevention of disability in community-dwelling physically frail older persons, though an overview on their content, methodological quality and effectiveness is lacking.</p> <p>Methods</p> <p>A search for clinical trials involved databases PubMed, CINAHL and Cochrane Central Register of Controlled Trials and manually hand searching. Trials that included community-dwelling frail older persons based on physical frailty indicators and used disability measures for outcome evaluation were included. The selection of papers and data-extraction was performed by two independent reviewers. Out of 4602 titles, 10 papers remained that met the inclusion criteria. Of these, 9 were of sufficient methodological quality and concerned 2 nutritional interventions and 8 physical exercise interventions.</p> <p>Results</p> <p>No evidence was found for the effect of nutritional interventions on disability measures. The physical exercise interventions involved 2 single-component programs focusing on lower extremity strength and 6 multi-component programs addressing a variety of physical parameters. Out of 8 physical exercise interventions, three reported positive outcomes for disability. There was no evidence for the effect of single lower extremity strength training on disability. Differences between the multi-component interventions in e.g. individualization, duration, intensity and setting hamper the interpretation of the elements that consistently produced successful outcomes.</p> <p>Conclusion</p> <p>There is an indication that relatively long-lasting and high-intensive multicomponent exercise programs have a positive effect on ADL and IADL disability for community-living moderate physically frail older persons. Future research into disability prevention in physical frail older persons could be directed to more individualized and comprehensive programs.</p
    • …
    corecore